
2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

1

RIOT: an Open Source Operating System
for Low-end Embedded Devices in the IoT

Emmanuel Baccelli, Cenk Gündoğan, Oliver Hahm, Peter Kietzmann, Martine S. Lenders,
Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias Wählisch

Abstract—As the Internet of Things (IoT) emerges, compact
operating systems are required on low-end devices to ease devel-
opment and portability of IoT applications. RIOT is a prominent
free and open source operating system in this space. In this paper,
we provide the first comprehensive overview of RIOT. We cover
the key components of interest to potential developers and users:
the kernel, hardware abstraction, and software modularity, both
conceptually and in practice for various example configurations.
We explain operational aspects like system boot-up, timers, power
management, and the use of networking. Finally, the relevant
APIs as exposed by the operating system are discussed along
with the larger ecosystem around RIOT, including development
and open source community aspects.

Index Terms—Internet of Things (IoT), operating system,
constrained networking, real-time system

I. INTRODUCTION

The Internet is expanding with the advent of the Internet of
Things (IoT)—billions of physical entities on our planet (and
beyond) are expected to be instrumented and interconnected
by open protocol standards. In particular, the IoT will harness
next-generation sensors and actuators to interoperate with the
physical world. Such cyber-physical systems will not only
perform data acquisition and processing, but are also likely
to control more and more elements of our environment. IoT
devices will not only interconnect, but also extend communi-
cation beyond gateways, into today’s Internet (e.g., the cloud)
which has not dealt before with so many devices of marginal
intelligence.

IoT devices in this context are very constrained [25] in
terms of hardware resources. In particular, low-end IoT devices
do not have enough resources to run conventional operating
systems like Linux, BSD, or Windows, or even run optimized
operating system (OS) derivatives like OpenWRT, uClinux,
Brillo, or Windows 10 IoT Core. As resource limitations
on low-end IoT devices are expected to last [37], [39], a
variety of more compact operating systems were recently
designed [29]. One of the prominent operating systems in
this space is RIOT [10], which was written from scratch for

E. Baccelli is with INRIA, France (e-mail: emmanuel.baccelli@inria.fr).
C. Gündoğan, P. Kietzmann, and T.C. Schmidt are with Hamburg University

of Applied Sciences, Germany (e-mail: {cenk.guendogan, peter.kietzmann,
t.schmidt}@haw-hamburg).

O. Hahm was supported by INRIA and Freie Universität Berlin while
working on RIOT (e-mail: oleg@riot-os.org).

M. Lenders, H. Petersen, M. Wählisch are with Freie Universität Berlin,
Germany, (e-mail: {m.lenders, hauke.petersen, m.waehlisch}@fu-berlin.de).

K. Schleiser is a freelancer and was supported by INRIA, France, and Freie
Universität Berlin, Germany (e-mail: kaspar@riot-os.org).

low-end IoT devices. RIOT runs on minimal memory in the
order of ≈10kByte, and can run on devices with neither MMU
(memory management unit) nor MPU (memory protection
unit). The goal of this paper is to provide an overview of
RIOT, both from the operating system point of view, and from
an open source software and ecosystem point of view.

Prior work [28], [29] has surveyed the space of operating
systems for low-end IoT devices. Open source operating
systems other than RIOT which target a similar range of
IoT devices include Contiki [27], Zephyr [18], mbed OS [2],
FreeRTOS [24], or TinyOS [36]. While it is not the goal of
this paper to make a detailed comparison between RIOT and
other operating systems for low-end IoT devices, we want to
emphasize the following key distinctive aspects.

First, operating systems divide according to resource re-
quirements. RIOT requires less memory and adapts to a
wider range of architectures (8 to 32 bits) compared to most
other OSes. Second, a characteristic feature amongst OSes in
this domain relates to cross-platform hardware support. Some
operating systems are tied to a hardware vendor and only target
at a single hardware architecture. Finally, a distinction relates
to what software features are provided. Some implementations
offer a limited subset of OS components, e.g. FreeRTOS [24]
is a scheduler; Arduino [1] is a hardware abstraction layer. On
the contrary, as we describe in the following, RIOT provides
the full set of features expected from an OS, ranging from
hardware abstraction, kernel capabilities, system libraries, to
tooling.

Up until now, RIOT has only been briefly described in [23].
In contrast, the contribution of this paper is a comprehensive
overview and rationale of its building blocks, its interfaces to
related IoT software, and its open source ecosystem.

First, we survey the main requirements for an OS running on
low-end IoT devices (in § II). Next, we dive into the technical
guts of the main areas and concepts of RIOT: the kernel, hard-
ware abstraction, system initialization, power management,
the timer subsystem, the networking subsystem, the main
APIs and external libraries integration (in § III– XII). Finally,
we describe the larger ecosystem around RIOT: the suite of
tools for RIOT development, example OS configurations, code
quality management processes, and open source community
aspects (in § XIII– XVI).

Copyright © 2018 IEEE. Personal use of this material is permitted. However, permission to use this material
for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

2

Overview of this paper

§ II Anatomy of an IoT Operating System
§ III RIOT Principles & Goals
§ IV The RIOT Software Structure
§ V The RIOT Kernel
§ VI Hardware Abstraction
§ VII System Booting
§ VIII Power Management
§ IX Timer Subsystem
§ X Networking Subsystem
§ XI External Libraries
§ XII RIOT Application Programming Interfaces
§ XIII Example Configurations
§ XIV Tools & Code Quality Workflow
§ XV The RIOT Open Source Community
§ XVI Conclusion & Perspectives

II. ANATOMY OF AN IOT OPERATING SYSTEM

An operating system for IoT devices must pack a number
of features including (but not limited to) hardware-abstraction,
networking, and power management, in the presence of spartan
hardware resource consumption. In this section, we survey in
more details the requirements for an OS running on low-end
IoT devices.

A. Low-end vs. High-end IoT Devices
Compared to high-end IoT devices such as smartphones

and RaspberryPis, low-end IoT devices typically have a factor
of 106 less memory, 103 less central processing unit (CPU)
capacity, consume 103 less power, and use networks with 105

less throughput. Low-end IoT devices are based on three core
components:

1) A micro-controller (MCU)—a single piece of hardware
containing the CPU, a few kB of random access memory
(RAM) and read-only memory (ROM), as well as its
register-mapped peripherals.

2) Diverse external devices such as sensors, actuators, or
storage, which are connected to the MCU via a variety
of input/output (I/O) standards such as UART, SPI, or
I2C 1.

3) One or more network interfaces connecting the device
to the Internet, typically using a low-power transmission
technology. Such transceivers can either be part of the
MCU (this case is known as a system-on-chip (SoC)), or
be connected as external device via an I/O bus.

Micro-controllers on low-end IoT devices differ substantially
across vendors, even for the same CPU architecture. However,
micro-controllers typically have in common that (i) they are
single-core, with slow clock cycles in the order of few MHz,
and (ii) they do not provide advanced features, such as an
MMU.

B. OS Requirements for Low-end IoT Devices
Following from this environment, an OS for low-end IoT

devices must strike a balance between several design directions
to meet the requirements outlined below.

1respectively: Universal Asynchronous Receiver/Transmitter, Serial Periph-
eral Interface, and Inter-Integrated Circuit

1) Basic Performance Requirements: The key performance
requirements for such an OS are (i) memory efficiency, (ii)
energy efficiency, and (iii) reactivity. In order to fit the RAM
and ROM budget on low-end IoT devices, the OS must achieve
a small memory footprint. IoT devices are generally expected
to last years on a single battery charge. An OS should hence
provide built-in energy saving mechanisms exploiting as much
as possible the low power modes available on IoT hardware. In
several contexts such as sensing alarms or reacting to remote
commands, IoT devices are expected to react in (near) real-
time. An OS should thus be able to provide at least soft real-
time capabilities.

Here, an important observation is that, depending on the
approaches, improving performance on one aspect may impact
performance in another aspect. For instance, some approaches
to memory efficiency may yield more CPU operations and
more copying, thus harming energy efficiency. Similarly, an
approach using deep sleep modes to save more energy may
incur indeterministic system restore delays, thus harming
reactivity.

2) Network Interoperability Requirements: Low-end IoT
devices are expected to be connected to the network. Link-
layer technologies used in the IoT include various low-
power wireless technologies such as IEEE 802.15.4, Bluetooth
Low-Energy (BLE), or LoRa. Link-layers relevant in IoT
also include wired technologies such as BACnet, Power-line
Communication (PLC), Ethernet or Controller Area Network
(CAN). An OS should thus offer support for heterogeneous
radio and wired transceivers, as well as various link-layers.
On top of that, seamless Internet connectivity is often ex-
pected from IoT devices. Hence, an OS should offer support
for the standard low-power IP stack, including 6LoWPAN,
IPv6, UDP, CoAP [38]. Support for additional protocols may
also be required in order to route packets, manage devices,
and interoperate in the Web of Things (WoT). For instance,
additional protocol support may be needed to comply with
distributed interoperability frameworks such as Thread and
IoTivity.

Here, an important observation is that the requirements for
network technology support are (i) heterogeneous and (ii)
likely to evolve over time. For example, it should be easy
to integrate upcoming experimental stacks (e.g. information-
centric networking [20] or software-defined networking [34]).
The OS should thus enable some level of modularity to facili-
tate system evolutions, and to easily fit various configurations
– while still matching the basic performance requirements
described in Section II-B1.

3) System Interoperability Requirements: Software on IoT
devices may be complex, and must often comply to rigorous
quality constraints. On the other hand, not only is currently
available low-end IoT hardware diverse, but it also quickly
evolves over time. Hence, non-portable IoT software should
be minimal. At low level, an OS must provide hardware
abstraction so that most of the code is reusable on all IoT
hardware supported by the OS. At application and software
library level, an OS should provide standard interfaces to plug
in a wide variety of third-party software modules.

Here, an important observation is that employing exotic



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

3

programming models and languages may seem attractive to
achieve performance requirements, but can fatally harm system
interoperability requirements, by limiting the reuse of well-
known development tools, and by reducing the pool of avail-
able programmers and libraries [36].

4) Security and Privacy Requirements: IoT deployments
are expected to penetrate both private lives and industrial
processes, raising high demands for security and privacy of
systems and applications. Conversely, the sheer number of de-
ployed IoT devices poses a severe threat to the general Internet
infrastructure, as recently demonstrated by the Mirai botnet
attack [21]. An OS for the IoT must be carefully developed and
continuously reviewed to minimize its attack surface. Crypto
primitives must be wisely selected and specifically adapted
to meet the device constraints—typically unsuited to perform
asymmetric cryptography at scale. Furthermore, to prevent
unwanted privacy violations or data leaks, transparency is
desirable concerning end-user data handling, with end-users
remaining in control.

In that regard, decades of experience have shown that a
good approach to provide trustworthy security standards is
free open source software, under active development and
continuous review by a grass-roots community. Moreover,
fully transparent end-user data handling cannot be achieved
without disclosing a full view on code. This can only be
achieved with a truly open source approach.

III. RIOT PRINCIPLES & GOALS

RIOT is an open source OS, based on a modular architecture
built around a minimalistic kernel, and developed by a world-
wide community of developers. Before we detail the concepts
at work in RIOT, it is important to note the goals which
motivated the design of RIOT in the first place:

• minimized resource usage in terms of RAM, ROM, and
power consumption;

• support for versatile configurations: 8-bit to 32-bit MCUs,
wide range of boards and use-cases;

• minimized code duplication across configurations;
• portability of most of the code, across supported hard-

ware;
• provide an easy-to-program software platform;
• provide real-time capabilities;

The above goals lead to a number of principles which
explain parts of the design of RIOT. These principles are the
following:

1) Network Standards – RIOT focusses on open, standard
network protocol specifications, e.g. IETF protocols;

2) System Standards – RIOT aims to comply to relevant
standards, e.g. the ANSI C standard (C99), to take full
advantage of the largest pool of 3rd party software.
Extensive use of C language caters for both low resource
requirements and easy programability;

3) Unified APIs – RIOT aims to provide consistency of
APIs across all supported hardware, even for hardware-
accessing APIs, to cater for both code portability and
minimize code duplication;

Hardware-independent

Hardware-dependent

Application

Hardware

pkg sys sys/net

core (kernel) drivers

periph

cpu boards

Fig. 1: Structural elements of RIOT.

4) Modularity – RIOT aims to define self-contained build-
ing blocks, to be combined in all thinkable ways, to cater
both for versatile use cases and for memory constraints;

5) Static Memory – RIOT makes extensive use of pre-
allocated structs to cater both for reliability, simplified
validation and verification, as well as real-time require-
ments;

6) Vendor & Technology Independence – Vendor libraries
are typically avoided, to preclude vendor lock-in and to
minimize code duplication; Furthermore, design decisions
should not tie RIOT to a particular technology;

7) Open & Inclusive Open Source Community – RIOT
aims to remain free and open for everyone, and to
aggregate a community with 100% transparent processes.

With such goals and principles in mind, the next sections
describe RIOT in detail, following a bottom-up approach.

IV. THE RIOT SOFTWARE STRUCTURE

RIOT is structured in software modules that are aggregated
at compile time, around a kernel providing minimalistic func-
tionality. This approach allows to build the complete system in
a modular manner, including only modules that are required by
the use-case. This not only minimizes memory consumption,
but also system complexity in the field. Still, modularity is
balanced to avoid unmanageable structural convolution in the
long run due to overly fine-grained software components [36].

At a high level, the RIOT code is structured according to
the groups depicted in Fig. 1:

• core implements the kernel and its basic data structures
such as linked lists, LIFOs, and ringbuffers;

• hardware abstraction distinguishes four parts: (i) cpu
which implements functionalities related to the micro-
controller, (ii) boards which mostly selects, configures,
and maps the used CPU and drivers, (iii) drivers
which implements device drivers, and (iv) periph which
provides unified access to microcontroller peripherals and
is used by device drivers;

• sys implements system libraries beyond the function-
alities of the kernel, such as crypto functionalities, file
system support and networking;

• pkg imports third-party components (libraries which are
not included in the main code repository);

• application implements the high-level logic of the
actual use-case.

Within code groups, functionalities are split into modules,
each of which consists of one or more API header file(s)



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

4

in the include path, and a single directory containing all
its code. Modules may have sub-modules used for tailoring
functionalities at a finer grain.

It is worth noting that the RIOT structure naturally factors
out high-level application logic. Thus, a straightforward ap-
proach (and current best practice) is to develop and maintain
high-level application code in a separate repository which
typically pulls in the particular RIOT release the application
is built upon.

The minimal configuration bundles only the core module
(without any sub-modules), a cpu module and a board
module. Every other module is optional. To give an idea, the
minimal configuration requires 3.2 kBytes of ROM and 2.8
kBytes of RAM on 32-bit Cortex-M platforms (even less on
8-bit and 16-bit platforms). A configuration compliant with
6LoWPAN requires 38.5 kBytes of ROM and 10 kBytes of
RAM. For more details and more examples of configurations
see Section XIII.

V. THE RIOT KERNEL

The kernel of RIOT initially evolved from the FireKernel
project [40]. It provides basic functionality for multi-threading:
context switching, scheduling, inter-process communication
(IPC), and synchronization primitives (mutex etc.). All other
components, such as device drivers, network stack compo-
nents, or application logic, are kept separate from the kernel
as described in the previous section. Typically, interaction
between such components is implemented via the minimalistic
core API provided by the kernel.

A. Multi-Threading

A thread in RIOT is akin to a thread in Linux. Using
the RIOT core API, each component – be it a driver for
a network transceiver, or some application-specific logic –
can run in a separate thread context with a thread priority
level assigned to it. Multi-threading was built-in to provide
the following advantages: (a) clean logical separation between
multiple tasks, (b) simple prioritization between tasks and (c)
easier import of code. Ignoring inherent additional complexity
needed to manage concurrency, the most prominent drawback
of multi-threading on low-end embedded devices is memory
overhead. This overhead decomposes into (i) memory for the
thread control block (TCB), (ii) memory for stack space, (iii)
memory for CPU context (registers). While (iii) is determined
by the CPU architecture (e.g. 64 bytes on Cortex-M, less on
16-bit and 8-bit), (i) and (ii) can be influenced by software.
In RIOT, the TCB is designed to be very small, limiting the
impact of (i). For instance, on Cortex-M, the TCB is 36 bytes
in the default configuration and 12 bytes without messaging. A
number of best practices (e.g., use of static memory allocation
for data structures, no recursive functions) minimize the stack
usage at run time. By combining the above it is possible to run
threads with simple logic, starting from 128 bytes of RAM in
total (on Cortex-M) for (i), (ii), and (iii).

a) Light-weight inter-process synchronization: The ker-
nel provides various synchronization primitives such as mutex,
semaphore and messaging (msg). These mechanisms are mod-
eled as submodules of the kernel and are thus optional, and
compiled only on demand. In terms of memory footprint, the
size of these submodules is small, for instance ∼170 bytes
of ROM for the mutex and ∼600 bytes of ROM for msg on
Cortex-M. In terms of speed, the delay incurred by using IPC
decomposes into the time for (i) saving and restoring thread
contexts, (ii) the runtime of the scheduler and (iii) the runtime
of the IPC submodule itself. While (i) is entirely determined by
the CPU architecture, (ii) is constant as described in Section
V-B, and a slim design of msg makes (iii) small overhead
compared to (i) and (ii).

b) Multi-threading is optional: For some scenarios
where extremely low memory usage is mandatory, a single-
threaded application may be desirable. RIOT does not force the
use of multiple application threads. Unless a selected system
module needs to run a thread, the user application can be
the only thread running on the system. In that case, it is
possible to remove most of the memory requirements of the
scheduler. This way, it is possible to build extremely memory-
efficient firmwares in an Arduino-like fashion, still benefiting
from RIOT’s features including hardware abstraction, device
drivers, and tooling.

B. Scheduling & Real-Time Properties

The kernel of RIOT uses a scheduler based on fixed prior-
ities and preemption with O(1) operations, allowing for soft
real-time capabilities [31]. In more detail: the time needed to
interrupt and switch to a different thread will not exceed a
(small) upper bound, since context saving, finding the next
thread to run, and context restoring are all deterministic oper-
ations. A class-based run-to-completion scheduling policy is
used: the highest priority (active) thread runs, only interrupted
by interrupt service routines (ISRs). With this scheduler, RIOT
thus provides a clean way to prioritize tasks and preempt
handling of low priority tasks in order to deal with high-
priority events.

The scheduling policy used in RIOT simplifies real-time
scheduling in that, if an event requires action by a high priority
thread, lower priority threads are preempted and the high-
priority thread runs until the event has been handled. Note that,
in order to minimize processing time and energy consumption,
there are no context switches mimicking parallel execution of
tasks of the same priority. These characteristics allow for deter-
ministic, real-time system behavior – provided task priorities
are configured coherently. Furthermore, these characteristics
also support well use-cases with mixed-criticality, whereby
real-time tasks run alongside best effort tasks – e.g. an engine
control task (real-time) running on the same board with an IP
networking stack (non-real-time).

The scheduler used in RIOT is tickless. It does not depend
on CPU time slices and periodic system timer ticks. The
system thus does not need to periodically wake up unless
something is actually happening, e.g. an interrupt triggered
by connected hardware. A wake-up may be initiated by a



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

5

transceiver when a packet has arrived, by timers when they fire,
by buttons being pressed, or similar. If no other thread is in
running state and no interrupt is pending, the system switches
by default to the idle thread – which has lowest priority.
The idle thread in turn switches to the most energy-saving
mode possible (see Section VIII), thus optimizing energy
consumption.

VI. HARDWARE ABSTRACTION

Commissioning and managing hardware resources are cen-
tral aspects for an OS. In that regard, RIOT aims to provide
comprehensive hardware abstraction.

Hardware targeted by RIOT typically decomposes in a
micro-controller including its peripheral units (MCU), and a
number of external components such as sensors, actuators,
and network interfaces (see Section II for details). These
components are either connected via one or more printed
circuit boards (PCB), or gathered in a system on chips (SoC)
which combines an MCU and other elements on the same die.
From here on in this paper, we will use the term CPU is used
as synonym for MCU, meaning both the CPU core and its
peripherals which are register-mapped.

The hardware abstraction in RIOT reflects this composition
by structuring all hardware-dependent code into three blocks,
stored in the folders boards, cpu, and drivers. Great care
is taken to prevent code duplication as much as possible. In
general, hardware abstraction in RIOT is designed to speed
up porting efforts, by capitalizing automatically on existing
code. If the CPU and drivers are already supported, porting
RIOT to a new board is simply a matter of creating a few
configuration files (this can be done under an hour by a
skilled developer). Otherwise, the complexity of supporting
a new CPU, or a new driver, depends obviously on the actual
hardware. However, on one hand, new code which may be
needed is limited to boards, cpu, and drivers. And on
the other hand, existing code outside of these folders (see Fig.
1) works out-of-the-box.

Every RIOT build includes exactly one instance of a
board, one instance of a cpu implementation, and zero or
more drivers. Tasks addressed by each of these three blocks
and details of their implementation are described in the next
sections.

A. CPU Abstraction

The cpu abstraction gathers implementation and configura-
tion of all aspects of the micro-controller in use. This includes
specific code for handling interrupts, context switching, system
clock management, timers and drivers for peripherals such as
UART and SPI.

Core abstraction – RIOT follows a hierarchical approach
distinguishing the CPU architecture (e.g. Cortex-M4), the
CPU family (e.g. stm32), the CPU type (e.g. stm32f4),
and finally the actual CPU model (e.g. stm32f446re).
This reflects the way different CPU vendors structure their
portfolios. An example for the Cortex-M CPU architecture is
depicted in Fig. 2.

avr8

msp430

arm7

cortexm

mips32r2

. . .

ezr32

nrf5x

kinetis

sam

stm32

. . .

k22f

k60

. . .

stm32f0

stm32f1

stm32l4

. . .

mk60dn256

mk60dn512

. . .

stm32l476rg

stm32l432kc

. . .

architecture
CPU ARCH

family
CPU FAM

type
CPU

model
CPU MODEL

Fig. 2: Hierarchical code organization of CPUs in RIOT.

In general, all CPU-dependent implementation artifacts are
placed as close as possible to the root of the tree. Referring to
our previous example, assembly code for context switching
and interrupt handling for Cortex-M is implemented once,
for all Cortex-M CPUs, and is reused by all CPUs based
on this architecture – thereby reducing the effort of porting
new Cortex-M CPUs. For efficiency reasons, this structure is
not enforced: tailoring is tolerated to cater for the specific
properties a particular platform may have. For instance, the
Linux-based CPU abstraction used for the native port (see
Section XIV) does not need such hierarchical structure and is
thus implemented in a single module.

Generic Peripheral API – RIOT provides vendor- and
architecture-agnostic APIs for typical micro-controller pe-
ripherals (gpio, uart, spi, pwm etc.). The goal of these
interfaces is to increase code portability by providing unified,
but direct and fine-grained access to such peripherals. For
example, through this API, using an SPI bus on a 8-bit Atmel
megaAVR CPU is identical to using an SPI bus on a 32-
bit ST Cortex-M4. Note however that the intention here is
not to model into the API all possible (often vendor-specific)
operation modes, but rather to provide the basic functionality
which covers most use cases.

In general, these peripheral interfaces are implemented from
scratch, directly on top of the register definitions, without
using any vendor libraries. This has proven to be much more
efficient in terms of run-time overhead and code size (e.g.
∼200 lines of code for the STM32F4’s SPI driver in RIOT
vs. >1500 lines for the driver in the vendor library). However,
this convention is not strictly enforced, as the decision to use
vendor libraries is made per CPU family.

B. Board Abstraction

A board in RIOT is considered as the software counterpart
to a PCB in hardware. The term board in this context thus
refers to an IoT device as a whole, and is used as synonym with
hardware target, or platform. The board maps (i) the selection
and configuration of the CPU in use, (ii) the selection and
configuration of drivers for components available on-board,



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

6

(iii) board-specific initialization code, and (iv) the tooling and
its configuration needed to interact with the board, e.g. to
program it.

For the CPU in use, the board specifies the full configuration
of CPU peripherals, including not only the number of UART,
SPI, or timers used, but also their pin mapping, clock settings
and related aspects. The board configuration also selects
the driver modules that should be used and specifies their
configuration details, including the number of active instances,
the mapping of those instances to pins and CPU peripherals,
providing information on operating modes. Some boards need
to setup and control external pin multiplexers, power manage-
ment chips, etc. In such cases, the specific implementations
provide the necessary start-up and management code. Settings
for programming and debugging the IoT device including the
selection of the flashing tool (e.g. OpenOCD), the default serial
port, etc, are also part of the configuration.

C. Driver Model
Drivers in RIOT are software modules that control CPU-

external components such as sensors, actuators, storage, or
network transceivers. The driver model is based on three major
design objectives: (i) driver implementation should be inde-
pendent from the board and CPU, (ii) drivers should allow for
multiple active instances, and (iii) drivers should implement
common high-level APIs. Sticking with these objectives allows
not only for the drivers to be re-used on any board, but
also to swap components and drivers without changing user
application code.

Drivers typically control hardware components connected to
CPU through general purpose pins (GPIO) and buses such as
UART, SPI, or I2C. To be able to communicate with the target
component, a driver thus needs to access the corresponding
micro-controller peripherals. A driver achieves this through
RIOT’s peripheral API provided by the CPU implementations
(see Section VI-A). By enforcing this abstraction, all drivers
are CPU-agnostic and can be used with any supported board.
Furthermore, drivers do not need to be modified when porting
new boards to RIOT.

It may be required by applications to use several com-
ponents of the same type. For example, a robot might use
multiple distance sensors, or an IoT device might use two
temperature sensors to measure simultaneously temperature in-
room and outside. For such cases, driver implementation must
allow multiple active instances of the same driver. The typical
reason why this may be difficult, is that drivers generally keep
their state in a set of global variables. The driver model in
RIOT solves this issue by requiring drivers to bundle all their
run-time state into a single, separate data structure. The pointer
to this structure is called the device descriptor and is used to
identify a specific device instance.

Generic Driver APIs – To enable code portability on top of
component drivers, a common high-level abstraction is needed.
For instance, it is desirable to use a 6LoWPAN network
stack unchanged on top of various radio transceivers. In the
RIOT driver model, this is achieved by categorizing hardware
components into classes and by providing a dedicated high-
level API for each class of hardware component. Currently,

three APIs are defined: netdev for network transceivers,
SAUL for sensors and actuators, and MTD for (flash-) storage
components. While the MTD interface is modeled after the
corresponding Linux API, the other two interfaces are de-
signed specifically for RIOT. The next section describes SAUL
in more detail, and netdev is described in Section X.

D. Sensor/Actuator Abstraction

RIOT provides a generic API for accessing sensor and
actuator devices, called the Sensor Actuator Uber Layer
API, SAUL. This API allows not only a vendor-agnostic
access to sensors and actuators, but also allows to write
applications against heterogeneous IoT devices, using the same
function calls.

SAUL builds upon device descriptors defined by RIOT’s
driver model (see Section VI-C) and upon a generic data type
called phydat. Sensors and actuators work with physical
values, e.g. temperature sensors read temperatures in °C or °F,
motors are controlled setting the torque (Nm). Based on this
observation, RIOT defines a self-describing and compact (8
bytes) data type encoding these physical values. This data type
contains up to 3 numerical values, combined with a scaling
factor and an enumeration value specifying the physical unit
in use. phydat thus uses a custom floating point notation
with a 15-bit mantissa for each value and a shared 8-bit
exponent – providing a precision sufficient for interfacing with
all common sensors and actuators. Although these values allow
for simple conversion into regular floating point numbers on
a higher level, the CPU does not need to know about floating
point arithmetics when just handling the phydat structure.
To read or write values from/to a target sensor or actuator,
SAUL requires only the descriptor of the target device and a
pointer to a phydat structure.

On top of the SAUL interface, RIOT provides a device
registry for sensor and actuator devices. This registry enables
iterating through all SAUL-enabled devices at run-time, which
allows applications to automatically adapt to available devices.
While this can be used as base for plug-and-play-like behavior,
the typical use case is to iterate through the SAUL registry for
auto-configuration during system initialization. For instance,
the SAUL registry can be used to automatically map all SAUL-
enabled devices to CoAP resources, thus allowing for remote
access to all local sensors and actuators.

VII. SYSTEM BOOTING

RIOT provides all elements for bootstrapping IoT hardware
from the very first software instruction called (typically some
kind of reset interrupt handler) up to the point where the
actual main function is called in a thread context. Wherever
possible, all initial initialization code is implemented in plain
C, which leads to a better level of maintainability than the
typical approach based on assembly code. The system start-
up sequence consists typically of the following steps: (i)
memory bootstrapping, (ii) initialization of board and CPU,
(iii) initialization of the C-library used (this step is optional),
and finally (iv) setup and initialization of the actual operating
system.



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

7

The memory initialization simply takes care of copying the
initialized variables into RAM (data section) and setting all
uninitialized variables to zero (bss section). This step can
optionally be extended with hardware specific sub-tasks, e.g.
application of fixes for hardware bugs, as specified in the
vendor errata sheets.

The board initialization then takes care of initializing board
specific hardware elements, such as on-board LEDs, I/O-
expanders, or CPU-external power management devices. At
this point, the CPU initialization is also triggered, which takes
care of setting up the interrupt system, the clock tree, shared
peripheral drivers etc.

Next, the C-library initialization takes care of mapping libc
functions (e.g. functions for dynamic memory allocation or
stdio access) to the corresponding RIOT syscalls.

At this stage the base system is initialized, and control is
handed over to the RIOT kernel. After setting up the idle and
main threads and switching into the latter, RIOT initializes
all configured system modules and device drivers through its
auto_init module. Lastly, the actual main function is
called, which is the entry point for the actual user application.

It is worth pointing out that the described start-up sequence
can be tailored in various ways. For example, applications can
be designed to call all device driver and system module initial-
izations manually, by de-selecting the auto_init module.

VIII. POWER MANAGEMENT

To design power management, it is crucial to first un-
derstand both the source(s) of energy consumption, and the
influence software can have on these. A device’s total energy
consumption is the sum of the power consumed by (i) the CPU,
(ii) devices connected through peripherals, and (iii) various
other passive components external to the CPU. While (iii) is
heavily influenced by a board’s hardware design, both (i) and
(ii) are influenced by software.

On one hand, the power management system in RIOT
automatically sets the CPU in the deepest possible sleep mode
when idle, which decreases energy consumption due to (i). On
the other hand, user applications or other system modules are
expected to deal with (ii) by managing the state of peripherals.
For example, a network transceiver is managed by a MAC
layer protocol module, while a sensor is managed by a sensing
application.

The core design element in the CPU’s power management
system in RIOT is the so-called idle thread. This thread is
created during system startup and is scheduled when no other
thread needs to run, i.e. when the CPU is idle. The CPU’s
power management is built around a single function, which
triggers the CPU to go into the lowest possible power state
(sleep mode). Calling this function is the only task the idle
thread performs. This mechanism works transparently for user
applications and other system modules, as follows.

A module called pm_layered implements the default
mechanism which determines the lowest possible power state.
This module is shared by various CPU implementations. The
pm_layered module uses a simple consensus mechanism
called Cascade, distributed between CPU peripherals and user

threads. Cascade is based on a strict hierarchy of power
mode levels, that are defined on a per-CPU basis. A lower
power level means less power consumption. The hierarchy
is such that, if power level N is blocked, all power levels
M ≤ N are implicitly also blocked, thus preventing the
CPU to switch to any power level M ≤ N . When using
the pm_layered module, peripheral drivers or application
code can each independently (un)block power modes that are
(in)appropriate to run on. For example, a UART driver can
block all deep sleep CPU states, as these would prevent the
UART peripheral to work correctly. The UART driver would
keep the deep sleep power state blocked while the UART
peripheral is enabled, and unblock the power state once the
peripheral is disabled. Independently, when scheduled, the
idle thread switches the CPU to the lowest power mode
currently unblocked in pm_layered.

Note, however, that using the pm_layered module is not
mandatory. CPU implementations can be tailored to use a
mechanism other than Cascade for determining the lowest
possible power state, e.g. via hardware.

IX. TIMER SUBSYSTEM

Timers are a very important part of any operating system, as
they provide a mapping between the physical time as perceived
in the outside world, and the internal timing used by the CPU
(i.e. ticks). A typical challenge with timers is dealing with high
dynamic range, covering time spans from nanoseconds up to
days and months. Another challenge is the (potentially large)
number of timers required to run in parallel depending on the
application and the situation, while a hardware platform only
provides a limited, constant number of timers.

Typical CPUs supported by RIOT provide a set of general
purpose timers, and optionally one or more real-time timers
(RTTs), or a real-time clock (RTC). Each of these provides
a number of capture-compare channels which determine the
number of timers that can be set at the same time.

To make these low-level timers available to application
developers in a transparent way, a high-level timer subsystem
is needed. As a minimum, this subsystem needs to provide
three capabilities: (i) tick conversion, (ii) multiplexing, and
(iii) range extension. Tick conversion simply refers to the
ability to convert physical units to timer ticks. On a system
with a 2 MHz timer, for example, one millisecond is mapped
to 2000 ticks. Multiplexing refers to the subsystem’s ability
to map any number of active timers onto a fixed number
of available hardware timer channels. Lastly, range extension
enables the timer subsystem to handle timers that exceed the
range of the underlying hardware timer, e.g. for setting a 1 s
timer on a 16-bit hardware timer at 1 MHz, which overflows
every 65 ms.

RIOT provides such a high-level timer subsystem, called
xtimer, which implements these three capabilities. xtimer
offers a simple API based on natural time values which
provides full abstraction from the underlying timer hardware
– means for putting threads to sleep, setting callback and event
timers etc.

For interfacing with actual hardware timers and RTCs/RTTs,
xtimer uses the peripheral driver interface. This way the



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

8

implementation is completely hardware-independent while still
being configurable to work with various hardware environ-
ments. In order to multiplex on top of the configured hardware
timers, xtimer data structures are stored in lists. Note that
the O(n) complexity for setting and removing timers implies
that the overall number of timers used in a specific system
configuration needs to be taken into account when analyzing
the system’s real-time behavior. Internally, xtimer uses a
configurable 64-bit time base, typically in a microsecond
granularity. Due to this, the subsystem can cope internally
with a very high dynamic range, and can – in conjunction
with overflow counters – cope with any type of underlying
hardware timer.
xtimer thus provides a single, portable timer API to RIOT

which can scale in magnitude, from fine granular timings in
microsecond up to tasks scheduled in hours or days.

X. NETWORKING SUBSYSTEM

The networking subsystem spans from transceivers to appli-
cation logic and is an integral part of any IoT operating system.
RIOT defines a flexible, layer-separating architecture [35] and
two programming interfaces for interacting with the network
subsystem. Southbound, the netdev interface offers a generic
network transceiver driver interface. Northbound, the sock
interface provides high-level network access for applications
(in equivalence to POSIX sockets). Examples of network
subsystems harnessed by RIOT via these interfaces include
the default IP stack of RIOT (named GNRC [35]) and a
variety of other IP protocols stacks (see Section XIII), as well
as experimental protocol implementations such as a content-
centric networking subsystem as shown in [30], [33].

A. The netdev Interface

netdev handles (i) data sent and received by the
transceiver, (ii) transceiver configuration and initialization, and
(iii) transceiver-related events. This interface is generic in
the sense that a network subsystem accessing the transceiver
through netdev can run absolutely unchanged if the
transceiver is replaced by another transceiver using a similar
link-layer technology.

1) Sending and receiving: netdev defines a single, asyn-
chronous function for sending data to the network device
driver. Data is passed with a struct iovec structure, and
the send function typically returns as soon as the data has
been copied into the internal transmit buffer of the transceiver.
However, synchronizing on actual transmission events such
as transmission started or transmission completed can be
configured to trigger corresponding events, as described below.
netdev also defines a single function for receiving data

from the network driver. As soon as the driver triggers an event
to indicate that the reception of a packet has been completed
(RX_COMPLETE), received data can be read using the recv
function which allows to either (a) obtain the size of the
incoming data, (b) read the incoming packet into a given buffer
and drop the packet afterwards, or (c) drop the incoming data
without reading it. The recv function can also be used to
pass cross-layer data such as LQI, RSSI etc.

2) Transceiver configuration & initialization: netdev
provides generic get and set functions that reads or writes
network driver configuration options in a key-value syn-
tax. Typical keys are link layer address, radio channels, or
transceiver states. All options are listed and identified in an
extensible enumeration type called netopt. It is up to a
device driver to service a given option, or to simply return
an error code in case the option is not supported. Finally,
netdev also exposes a generic init function to initialize a
transceiver.

3) Transceiver event handling: netdev handles events
that fall into the four categories: receive (RX), transmit (TX),
link, and system.

RX and TX events cover all notifications that are triggered
in the process of sending and receiving data through the
network. Most prominently, transceiver drivers support the
RX_COMPLETE event that is triggered every time new data
is available. A variety of other events such as link layer state
changes are supported by a subset of transceiver drivers. Link
events allow a transceiver driver to signal changes of the
link state or link configuration to the upper network layers
and are useful to initiate operations at the network layer.
For instance, a LINK_UP event is typically used to start an
IPv6 router solicitation. System events allow to notify the
thread running the corresponding transceiver driver from an
ISR. In conjunction with an event_callback, this allows
programmers to specify how to call the event handler of a
driver.

B. The sock Interface

sock is a collection of high-level network access APIs
similar to the POSIX socket API. These interfaces are generic
in the sense that an application accessing the network through
sock can run absolutely unchanged if the network subsystem
is replaced by another network stack.

In contrast to POSIX sockets, sock interfaces do not
require any dynamic memory allocation or internal state
maintenance. The state variable for an end point is always
provided via its function call—an approach somewhat similar
to netconn from lwIP [26]. However, in contrast to the latter
or to POSIX sockets, sock is an API collection for various
types of transport protocols or channels. Users can thus keep
their implementation lean by confining it to those parts of
sock that are actually needed for their specific use case.

Currently supported are sock_udp for UDP traffic,
sock_ip for raw IP traffic, and sock_tcp for TCP traffic,
each of which provides means to:

• create end-points for the respective communication type,
• send data via those end-points or group addresses,
• receive data in either blocking mode (with optional time-

out) or non-blocking mode, and
• operate protocol-specific actions, e.g., connecting to or

listening for another peer in TCP.
Portability is ensured by conventions using only common types
and definitions, either from libc or POSIX. By combining
these elements, sock enables easy porting of applications
between RIOT and other operating systems. For instance,



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

9

Package Overall Diff Size Relative Diff Size

ccn-lite 517 lines 1.6 %
libfixmath 34 lines 0.2 %
lwip 767 lines 1.3 %
micro-ecc 14 lines 0.8 %
spiffs 284 lines 5.5 %
tweetnacl 33 lines 3.3 %
u8g2 421 lines 0.3 %

TABLE I: Some RIOT packages: # lines of patch files vs
overall LoC of the library.

RIOT itself provides the POSIX socket API as a wrapper
around sock, which is used to port external libraries to RIOT
(see Section XI). Conversely, sock can easily be wrapped
around a POSIX socket, thus making applications developed
against sock portable to any POSIX-based operating system.

XI. EXTERNAL LIBRARIES

RIOT caters for integration of third-party software and
libraries as packages (in the following referred to as pkg),
following an approach similar to BSD ports [5]. At compile
time, the pkg system uses a Makefile template which specifies
(i) how to automatically download a certain version of the
software, e.g. from an upstream code repository, (ii) how to
integrate the library seamlessly into RIOT, and optionally (iii)
, a collection of patch files and/or glue code adapting this
library to RIOT. Typically, patch files are minimalistic, such
that a package is reduced to a RIOT-specific Makefile and
minor code adaptation to comply with RIOT’s rather strict
compiler settings (see Table I). Otherwise, a pkg is equivalent
to a module (see Section IV) from the point of view of the
RIOT build system. The pkg system thus allows convenient
and transparent integration of external libraries into RIOT
with minor effort. Note however that some packages need
more adaptation, e.g. to make them hardware-independent as
expected by RIOT.

A wide variety of libraries are available as RIOT packages,
ranging from system libraries such as the TLSF malloc im-
plementation, to u8g2 for basic graphics; from crypto libraries
providing strong security primitives such as tweetNaCl or
micro-ecc, to full network stacks such as lwIP or OpenThread,
providing network-level interoperability.

Note that packages are typically integrated via the generic
system-level APIs defined by RIOT. For instance, packages
importing full network stacks in RIOT make use of netdev
and sock interfaces (see Section X) so that it is possible to
both (i) replace the network subsystem without any change to
drivers or to application code, and (ii) use these libraries on
top of most of the hardware supported by RIOT.

XII. RIOT APPLICATION PROGRAMMING INTERFACES

This section recaps the main application programming in-
terfaces defined by RIOT. It is important to note that these
interfaces are consistent across all hardware supported by
RIOT, meaning that coding against such interfaces guarantees
cross-platform code portability. See Table II, which lists the

Applications

Libraries
xtimer, . . .

Network stacks

Core Network
Device Drivers

Sensor/Actuator
Drivers

Hardware

sock

SAUL

netdevCore APIs

CPU abstraction Periph APIs

Fig. 3: The main programming APIs in RIOT.

APIs, as well as Fig. 3, which shows how these APIs articulate.
The APIs fall into four categories:

Core APIs provide basic OS kernel interfaces to manage
threads, interprocess communication, and concurrency.

Hardware abstraction APIs provide generic interfaces for
abstracting MCU peripherals as well as unified access
to device drivers grouped by device classes;

Timer APIs provide unified high-level access to the config-
ured, platform dependent timer infrastructure;

Network APIs provide a generic interface to different net-
work stacks.

XIII. EXAMPLE CONFIGURATIONS

This section gives an overview of the memory usage for a
number of typical build configurations. All of the numbers
given in this section are produced by building the below
configurations for the Atmel samr21-xpro board, which
is COTS hardware. The samr21-xpro integrates a 32-bit
Cortex-M0+ and an IEEE 802.15.4 radio on the same die.
Compared to the measurements reported in the below sections,
RIOT’s memory footprint on other hardware is either similar
(for other Cortex-M boards) or smaller (for 8-bit and 16-bit
hardware).

Every application is compiled with arm-none-eabi-
gcc version 5.4.1, and built without debug information (no
DEVELHELP, shell etc) using the default configuration unless
stated otherwise. In the following sections, we use the notation
of [X/Y ] kB to denote the usage of X kilobytes in ROM
(.text + .data sections) and Y kilobytes in RAM (.bss
+ .data sections). The .data section is counted in both
ROM and RAM usage, as its content is saved into the flash
and moved into RAM upon booting the system. All values are
rounded to 100 byte precision: the aim here is not to claim
measurement precision up to the last byte, but rather to provide
an idea of the memory requirements.



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

10

Core APIs Hardware Abstraction APIs Timer API High-level Network APIs

thread periph/uart, spi, ... xtimer sock
thread handling access to MCU peripherals high-level timer generic interface

msg, mbox, thread_flags SAUL abstraction to high-level connectivity
inter-process comm. access to sensors/actuators POSIX socket

mutex, semaphore netdev based on sock
concurrency handling access to network devices

mtd
access to storage devices

TABLE II: Overview of common system APIs to implement applications in RIOT.

RIOT Configuration ROM RAM

Basic RTOS 3.2 kB 2.8 kB
6LoWPAN-enabled 38.5 kB 10.0 kB
JavaScript-enabled 166.2 kB 29.1 kB
OTA-enabled 111 kB 17.5 kB

TABLE III: Measurements of RAM and ROM for various
configurations of RIOT, on typical IoT hardware based on a
32-bit Cortex-M0+ microcontroller.

A. Basic RTOS Configurations

A barebone configuration with just the kernel running on
top of the hardware abstraction (cpu and board, see Section
VI) has a memory footprint of [3.2/2.8] kB, of which 2.2kB
are stack space. This configuration is reproducible by building
tests/minimal in the RIOT codebase. A basic hello-world
configuration, adding standard I/O, has a memory footprint of
[7.9/2.9] kB. This configuration is reproducible by building
examples/hello-world in the RIOT codebase.

B. Configurations with IP Network Interoperability

Several configurations can provide IP network interop-
erability. A simple configuration providing IPv6, 6LoW-
PAN and CoAP interoperability with the RIOT default
network stack (GNRC [35]) has a memory footprint of
[38.5/10.0] kB. This configuration is reproducible by build-
ing examples/gnrc_minimal and adding the gcoap
module. Alternative configurations can provide the same
network interoperability, but integrate other network stacks
supported by RIOT. For instance, a matching configuration
using the lwIP [26] network stack has a memory footprint
of [52.7/15.8] kB, while a matching configuration using
the emb6 [32] network stack has a memory footprint of
[39.5/10.2] kB.

C. Configuration with JavaScript Interpreter

A configuration enabling high-level application program-
ming in standard JavaScript (full EcmaScript 5.1 compliance),
with the interpreter running directly on the device has a mem-
ory footprint of [166.2/29.1] kB. Note that [131.0/26.8] kB
of this is used by the JavaScript engine. This configuration
is reproducible by building (examples/javascript) in
the RIOT codebase. An alternative configuration with similar
memory footprint has been tested in [22] whereby the main

APIs of RIOT are mapped in JavaScript, and a small JavaScript
runtime container is exposed as a web resource (via CoAP).

D. Configuration with Secure Firmware Updates Over-the-Air

Several configurations can provide over-the-air firmware
updates. A typical configuration assembles (i) a small boot-
loader, and (ii) two firmware slots, similar to the approach of
MCUboot [7]. A possible configuration uses for (i) an RTOS
configuration of RIOT similar to the one described in Section
XIII-A. For each slot in (ii) a RIOT image featuring a software
update module can be used by building upon one of the
6LoWPAN network stack configurations described in Section
XIII-B. The total memory footprint of this composite configu-
ration is roughly [111/17.5] kB, consisting of [3.1/0.8] kB for
(i) and [53.7/17.5] kB for each of the OTA-enabled images
in (ii). Within this memory footprint, the software update
module provides the necessary functionalities to periodically
poll remote software update servers through the IP network,
download firmware updates over-the air, and verify integrity
and authenticity of the downloaded firmware using state-of-
the-art public-key crypto and hashing, before booting the new
firmware.

XIV. TOOLS & CODE QUALITY WORKFLOW

The default development process for RIOT is based on a
set of standard open source programs, including tools for
building (gcc, make), static analysis (cppcheck, coccinelle),
dynamic analysis (Valgrind), network sniffing (Wireshark),
standard debugger (gdb), performance profilers (gprof ), unit
testing (embUnit) and standard flashing tools (OpenOCD).

A. Debugging and Testing Tools

1) Shell: RIOT provides a command-line interpreter (CLI)
similar to a shell in Linux. This CLI is typically accessed
(remotely) over UART. It is designed to facilitate debugging
and run-time configuration while testing or conducting exper-
iments. Developers can easily add custom commands through
dedicated command handlers.

2) RIOT native: A basic hardware virtualizer allows the
compilation and execution of RIOT applications as user pro-
cesses in a host OS (supported host operating systems include
Linux, FreeBSD, and Mac OS X). This virtualizer, called
RIOT native, provides a basic emulator for typical IoT devices:
a board and CPU featuring timers, a UART, a network inter-
face, as well as basic sensors and actuators. Based on RIOT



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

11

native, up to hundreds of RIOT instances can run in parallel
on the host OS. RIOT native instances can communicate with
one another, or with the Internet, through virtual Ethernet
interfaces (using TAP interfaces on the host system). Going
further, RIOT can also be compiled and tested with advanced
emulators of relevant IoT hardware, such as MSPsim & Cooja
(emulating TI MSP430), AVRSim (emulating Atmel AVR),
and Renode (emulating ARM Cortex M).

B. Standard Workflow

A standard RIOT development methodology was defined
[11] which aims to shorten time-to-running-code on low-end
IoT devices. This methodology enables developers to effi-
ciently harness the aforementioned ecosystem of open source
software development tools. The methodology distinguishes
three phases whereby a developer (i) writes, debugs, and tests
the developed IoT software on RIOT native, then (ii) remotely
runs and debugs the software on real hardware by using open-
access IoT testbeds supported by RIOT, such as IoT-LAB [15]
[19], before finally (iii) running the code on the targeted IoT
device. This approach provides a controlled environment to
develop IoT software which speeds up development and lowers
the bar of entry for developers, on one hand by being standard,
free and open source, and on the other hand by not requiring
any specific IoT hardware on the premises, for phases (i) and
(ii).

C. Code Quality Management

The RIOT community specifies well-defined processes that
aim to ensure high code quality and solid documentation.
The processes leverage state-of-the-art open tools for source
code management (git and GitHub [10]) and documentation
(Doxygen, wiki). Strict and precise coding conventions favor
uniform code style and clarity, based on C99 (officially:
ISO/IEC 9899:1999), Linux kernel coding style, systematic
use of source code beautifiers such as uncrustify, as well as
common boiler plates with license and authorship information.
Systematic use of Doxygen comments for API documentation
is enforced by mandatory checks in the Continuous Integra-
tion (CI) testing. This way, up-to-date documentation can be
automatically exposed on the Web [9].

The review of code contributions to the master branch
follows a defined, transparent pull-request process on GitHub.
Open, back-traceable discussions on proposed code lead to
consensus-driven merge decisions, moderated by a pool of
RIOT maintainers (see Section XV). In particular, the code
review process prior to merging enforces a clean and manage-
able commit history on the master branch.

Last but not least, the code review process mandates ad-
vanced CI testing based on a framework called Murdock [8].
Murdock CI slaves are distributed over multiple sites in Europe
which have volunteered computing power. Murdock includes
a frontend which is conveniently integrated into GitHub, as
well as exposed on the web [8]. In the final stages before
being merged in the master branch, a pull-request is tested
via Murdock, which automates a large number of static tests
(including cppcheck and coccinelle tests), as well as unit tests

and compile tests for over 15000 build configurations, and
functional tests on selected platforms.

All in all, the code quality management processes aim
to scale by making the best of (i) distributed computing
power volunteered by participants in the RIOT community to
provide CI testing nodes, (ii) advanced automated testing and
extensive up-to-date documentation, and more generally (iii)
pooled IoT programming skills amongst RIOT developers and
maintainers.

XV. THE RIOT OPEN SOURCE COMMUNITY

The RIOT community gathers a large number of open
source code contributors [3] from around the world: at the time
of writing, the master branch of RIOT gathers the contributions
of more than 170 developers from industry, academia and the
maker/tinkerer communities. Both large companies (e.g. Cisco,
Continental, Samsung) and SMEs (e.g. Eistec, Hamilton)
contribute code, while various other companies (e.g. Fujitsu,
Atmel, Nordic, Eclipse Foundation) sponsor or support related
activities and events, such as the annual RIOT Summit [16].

The grass-roots RIOT community formalized a set of open
processes [13] aiming at organizational durability, vendor-
independence and transparency. Governance is mainly driven
by RIOT maintainers (a status obtained via meritocracy) who
have code review duties and merge rights on the master
branch. Processes include periodical (virtual and f2f) meet-
ings amongst developers and maintainers, partly inspired by
organizational aspects of IETF and Linux communities which
have proven scalable and durable.

Going one step further, the RIOT community also an-
alyzed the non-trivial question of the license of the code
[12], which is key to foster long-term community coherence
and fruitful interaction with the industry. The result of this
analysis confirmed RIOT’s choice of a non-viral copyleft
license (LGPLv2.1), while user applications, external libraries
and packages can be based on other open source licenses (or
be closed source). The RIOT community consensus shaped a
strong belief that such a license provides the most appropriate
framework to simultaneously (i) favor end-user protection by
ensuring a durably free, open source, and up-to-date code
base in RIOT’s master branch, and (ii) foster business models
around this free core, i.e. indirect business models à la Linux.

Various products shipped with RIOT have appeared since
2017, such as environmental sensors bundled with cloud back-
end services [6], smart heating devices [4], smart automotive
devices [14] or low-cost low-power communication modules
[17]. Simultaneously, since 2013, hundreds of academic works
in the field of IoT research have been based on RIOT, or
reference RIOT.

XVI. CONCLUSION & PERSPECTIVES

This paper presented a comprehensive overview of RIOT, an
open source operating system for low-end embedded devices,
around which a large community of developers has recently
aggregated. The technical contributions of RIOT, its archi-
tecture and core implementations, are discussed along with



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2815038, IEEE Internet of
Things Journal

12

community aspects—the organization of and experiences with
the large open source ecosystem around RIOT:

Contrary to other prominent operating systems in the
domain, RIOT takes an approach purposely similar to the
GNU philosophy of Linux in terms of code license, vendor-
independence and transparency. From a technical perspective,
though, RIOT is written from scratch (without using vendor
libraries) and differs from Linux in terms of the OS architec-
ture.

In the current context, tension is mounting between large
business requirements on the one hand, and individual privacy
and security requirements on the other. Smart sensing and the
Internet of Things are expected to exacerbate this tension even
more. As shown by Linux, using a free open source software
platform can strike a good balance between protecting end-
users and supporting industry, in the long run.

As a whole, these characteristics aim at sustaining code
performance and grassroots community coherence. However,
some characteristics of RIOT (e.g. code license, no use of ven-
dor libraries) have a potential to slow initial progress. Whether
or not this tradeoff will make RIOT fulfill its promises of
success similar to Linux remains to be seen. Nevertheless, the
availability of free open source ecosystems such as RIOT will
be crucial in democratizing the Internet of Things, and for this
is worth the effort and extra time.

AVAILABILITY

RIOT is open source, and publicly available on GitHub at

https://github.com/RIOT-OS/RIOT

ACKNOWLEDGEMENTS

Thanks to the whole RIOT community for the tremendous
work. Thanks to Alexandre Abadie, Joakim Nohlgard, Daniel
Petry and Bas Stottelaar for feedback on the text of this paper.
Thanks to Peter Schmerzl for fundamental inspiration, and to
Heiko Will for having been under fire. We also would like to
thank the public research institutions which co-founded RIOT:
Freie Universität Berlin, INRIA, and Hamburg University of
Applied Sciences.

REFERENCES

[1] Arduino. http://arduino.cc/.
[2] ARM mbed OS. https://mbed.org/technology/os/.
[3] BlackDuck analysis of RIOT. https://www.openhub.net/p/RIOT-OS.
[4] Eisox Smart Heating. https://www.eisox.fr.
[5] FreeBSD Ports. https://www.freebsd.org/ports/.
[6] Hamilton IoT. https://hamiltoniot.com.
[7] MCUboot. https://runtimeco.github.io/mcuboot/.
[8] Murdock: RIOT Continuous Integration. https://ci.riot-os.org.
[9] RIOT Application Programming Interfaces. https://api.riot-os.org/

modules.html.
[10] RIOT Code-Base. https://github.com/RIOT-OS/RIOT.
[11] RIOT Coding Best Practice. https://github.com/RIOT-OS/RIOT/wiki/

Best-Practice-for-RIOT-Programming.
[12] RIOT Community License Discussion. https://github.com/RIOT-OS/

RIOT/wiki/FAQ.

[13] RIOT Community Processes. https://github.com/RIOT-OS/RIOT/wiki/
RIOT-Community-Processes.

[14] Sleeping Beauty. https://sleeping-beauty.kontrollfeld.com.
[15] The IoT-LAB Testbed. https://www.iot-lab.info/hardware/.
[16] The RIOT Summit (Annual Conference). http://summit.riot-os.org.
[17] Unwired Devices. https://www.unwireddevices.com/products/.
[18] Zephyr Project. https://www.zephyrproject.org.
[19] C. Adjih et al. FIT IoT-LAB: A Large Scale Open Experimental IoT

Testbed. In Proc. of IEEE World Forum on IoT, December 2015.
[20] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman.

A Survey of Information-Centric Networking. IEEE Communications
Magazine, 50(7):26–36, July 2012.

[21] M. Antonakakis et al. Understanding the Mirai Botnet. In Proc. of 26th
USENIX Security Symposium, 2017.

[22] E. Baccelli, J. Doerr, S. Kikuchi, F. Acosta, K. Schleiser, and I. Thomas.
Scripting Over-The-Air: Towards Containers on Low-end Devices in the
Internet of Things. In IEEE PerCom, March 2018 (to appear).

[23] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt. RIOT
OS: Towards an OS for the Internet of Things. In Proc. of the 32nd
IEEE INFOCOM. Poster, Piscataway, NJ, USA, 2013. IEEE Press.

[24] R. Barry. FreeRTOS embedded operating system. http://www.freertos.
org.

[25] C. Bormann, M. Ersue, and A. Keranen. Terminology for Constrained-
Node Networks. RFC 7228, IETF, May 2014.

[26] A. Dunkels. Design and Implementation of the lwIP TCP/IP Stack.
2001.

[27] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors. In LCN, pages
455–462. IEEE Computer Society, 2004.

[28] P. Gaur and M. P. Tahiliani. Operating Systems for IoT Devices: A
Critical Survey. In 2015 IEEE Region 10 Symposium, pages 33–36,
May 2015.

[29] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes. Operating Systems
for Low-End Devices in the Internet of Things: a Survey. IEEE Internet
of Things Journal, 2015.

[30] O. Hahm et al. Low-power Internet of Things with NDN and Coopera-
tive Caching. In Proc. of 4th ACM Conference on Information-Centric
Networking (ICN), 2017.

[31] J. L. Hennessy and D. A. Patterson. Computer Architecture. A Quanti-
tative Approach. Morgan Kaufmann Publishers, 2003.

[32] Hochschule Offenburg. Documentation of the emb6 Network
Stack, v0.1.0 edition, 2015. https://github.com/hso-esk/emb6/blob/
b4ec037cd38c0f87013e3f0fb811f0f6da746f75/doc/pdf/emb6.pdf.

[33] P. Kietzmann, C. Gündogan, T. C. Schmidt, O. Hahm, and M. Wählisch.
The Need for a Name to MAC Address Mapping in NDN: Towards
Quantifying the Resource Gain. In Proc. of 4th ACM Conference on
Information-Centric Networking (ICN), pages 36–42, New York, NY,
USA, September 2017. ACM.

[34] D. Kreutz et al. Software-defined networking: A comprehensive survey.
Proc. of the IEEE, 103(1):14–76, 2015.

[35] M. Lenders, P. Kietzmann, O. Hahm, H. Petersen, C. Gündoğan, E. Bac-
celli, K. Schleiser, T. C. Schmidt, and M. Wählisch. Connecting the
World of Embedded Mobiles: The RIOT Approach to Ubiquitous Net-
working for the Internet of Things. Technical Report arXiv:1801.02833,
Open Archive: arXiv.org, January 2018.

[36] P. Levis. Experiences from a Decade of TinyOS Development. In
Proc. of OSDI, pages 207–220, Berkeley, CA, USA, 2012. USENIX
Association.

[37] L. Mirani. Chip-makers are Betting that Moore’s Law Won’t Matter in
the Internet of Things. Quartz, 2014.

[38] Z. Sheng, S. Yang, Y. Yu, A. V. Vasilakos, J. A. McCann, and K. K.
Leung. A survey on the ietf protocol suite for the internet of things:
Standards, challenges, and opportunities. Wireless Communications,
IEEE, 20(6):91–98, 2013.

[39] M. M. Waldrop. The chips are down for Moore’s law. Nature,
530(7589):144–147, 2016.

[40] H. Will, K. Schleiser, and J. H. Schiller. A Real-time Kernel for Wireless
Sensor Networks Employed in Rescue Scenarios. In IEEE LCN, 2009.

http://arduino.cc/
https://mbed.org/technology/os/
https://www.openhub.net/p/RIOT-OS
https://www.eisox.fr
https://www.freebsd.org/ports/
https://hamiltoniot.com
https://runtimeco.github.io/mcuboot/
https://ci.riot-os.org
https://api.riot-os.org/modules.html
https://api.riot-os.org/modules.html
https://github.com/RIOT-OS/RIOT
https://github.com/RIOT-OS/RIOT/wiki/Best-Practice-for-RIOT-Programming
https://github.com/RIOT-OS/RIOT/wiki/Best-Practice-for-RIOT-Programming
https://github.com/RIOT-OS/RIOT/wiki/FAQ
https://github.com/RIOT-OS/RIOT/wiki/FAQ
https://github.com/RIOT-OS/RIOT/wiki/RIOT-Community-Processes
https://github.com/RIOT-OS/RIOT/wiki/RIOT-Community-Processes
https://sleeping-beauty.kontrollfeld.com
https://www.iot-lab.info/hardware/
http://summit.riot-os.org
https://www.unwireddevices.com/products/
https://www.zephyrproject.org
http://www.freertos.org
http://www.freertos.org
https://github.com/hso-esk/emb6/blob/b4ec037cd38c0f87013e3f0fb811f0f6da746f75/doc/pdf/emb6.pdf
https://github.com/hso-esk/emb6/blob/b4ec037cd38c0f87013e3f0fb811f0f6da746f75/doc/pdf/emb6.pdf

