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Embedded network stacks are at the core of every software solution for the Internet
of Things (IoT), since they provide access to the outside world. This thesis presents
the proceedings of the design and implementation of the GNRC network stack.
Furthermore, it compares this stack to other stacks with similar feature sets, namely
lwIP [20] and emb6 [39]. I describe their functionality and architecture and provide
an experimental quantitative evaluation based on the RIOT operating system [4, 3].
Since the term IoT is only defined very broadly, I also provide a definition for my
view on the IoT and present the protocol suite used by both GNRC and the two
reference stacks.
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1 Introduction

1.1 Motivation

The Internet of Things (IoT) has a steadily growing industry [27, 62] and there are

many visions for it [74]. Currently, most manufacturers use proprietary technologies

such as ZigBee [95] and Z-Wave [92] – especially on the smart home market. But

ever maturing standardization of open IP-based technologies [45] has also sparked

new interest in open standards, not only in Free and Open Source Software (FOSS)

communities, but also by bigger industry representatives, as the participation in the

standardization process of recognizable names such as ARM, AT&T, Cisco, Ericsson,

Intel, Microsoft, Nokia, and many more shows [45, 48, 64, 66, 76].

The IoT has the potential to change our lives and how we see and use the In-

ternet and future innovations, much like the introductions of the World Wide Web,

smartphones or other technologies have had. As such, I am of the opinion that for

a sustainable future of the IoT, a further opening of the specifications and imple-

mentations is vital. Not only are closed solutions raising concerns regarding privacy

and security [87], but an open standardization will also allow for participation from

smaller businesses, private persons or communities interested in technology such as

e.g. several FOSS communities, or the maker/hacker community. The presence of

these – in economic terms – grassroots movements in the process will help to di-

versify and ultimately strengthen the field. This has already been seen with other

technologies such as the traditional Internet or the changes the rapid prototyping

industry saw with the advent of cheap and accessible 3D printers [81].

Several platforms that follow this Open Source spirit have emerged in the last

years. Examples for software platforms are the operating systems Contiki [23],

FreeRTOS [5], RIOT [4, 3] and TinyOS [57].

Since the idea of Open Source hardware is still very young [18], hardware platforms

of this kind for the IoT are still rather rare, with the Arduino micro-controller [1]

and the single-board computer series Raspberry Pi [70] currently being the most

popular on the different ends of the hardware spectrum of embedded systems.

During the integration of components of 6LoWPAN – the Internet Engineering

Task Force (IETF)’s adaptation protocol for IPv6 over IEEE 802.15.4 (see sub-

section 1.4.3) – into the previous network stack by S. Zeisberg [93] of the operating

system RIOT (then still called µkleos) for my Bachelor Thesis [51], I quickly realized

that its design did not really allow for new components to be easily integrated. This
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trend would later also show for other students working on the integration of other

components like O. Gesch’s transport layer module
”
DEStiny“ [35] and E. Engel’s

RPL implementation [26]. When I finally made the decision to port the network

stack originally developed on the MSB A2 platform [34] by Freie Universität Berlin

(which has a sub-GHz CC11xx radio using a proprietary PHY protocol [82]) to

the IEEE 802.15.4 based IoT LAB M3 Open Node [29] platform for the 1st ETSI

6LoWPAN plugtest [28], we realized that an overhaul of our networking structure

was needed. Likewise, none of the existing solutions seemed to fit our needs (see

section 1.5 for further details). This thesis documents both processes and results

of the effort of creating this new networking architecture for the RIOT operating

system.

1.2 Structure of This Thesis

The remainder of this introduction will outline the contributions of this thesis (sec-

tion 1.3), attempt to isolate my understanding of the IoT and describe the suite of

network protocols used in this thesis to implement IoT capabilities (section 1.4). By

adding this to the introduction I am set to list other works related to this thesis in

that context (see section 1.5).

In chapter 2 I describe the functionalities of the operating system I was working

with for this thesis: RIOT. Chapter 3 then provides an in-depth look into the

inner workings of the network stack GNRC, the main contribution of this thesis.

Afterwards, I provide a brief overview of two alternative stacks – emb6 and lwIP – in

chapter 4 and provide an evaluation of GNRC, both individually and in comparison

to emb6 and lwIP, in chapter 5. Finally, I conclude my thesis in chapter 6 and

provide an outlook regarding future works in this topic.

1.3 Contributions of This Thesis

In preparation and during the my work on this thesis I made several contributions

not only to my working group at Freie Universität Berlin, but also to the community

of the RIOT operating system which I would like to present in the following.

• Co-design of the GNRC network stack, described in chapter 3.

• Co-design of the network device driver API netdev, described in section 2.3.

• Design of the minimalist transport layer connectivity API conn, described in

section 2.4.

• Design of the common integration API to netdev for IEEE-802.15.4-based

devices.

• Documentation work on various components of RIOT, including

– top-level overview documentation,

2
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– core functionalities,

– third-party package management, and

– networking capabilities.

• Preliminary steps towards a unified testing environment for RIOT applications

(utilizing the unit-test library embunit and the python library pexpect).

• Preliminary port of RIOT’s TAP-based network device on the native platform

to the netdev API.

• Implementation of GNRC’s IPv6 module, including

– next-header demultiplexing,

– preliminary source address determination,

– next hop determination,

– NDP address resolution, and

– NDP router and prefix discovery.

• Implementation of GNRC’s 6LoWPAN module, including

– uncompressed packet handling,

– fragmentation and reassembly of IPv6 datagrams,

– compression of IPv6 headers, and

– optimization of NDP for 6LoWPANs (6Lo-ND).

• Porting of the lwIP network stack (see section 4.2) to RIOT

• Porting of the emb6 network stack (see section 4.3) to RIOT

• Co-authorship in the publication “Old Wine in New Skins?: Revisiting the

Software Architecture for IP Network Stacks on Constrained IoT Devices” [69]

to the 2015 Workshop on IoT challenges in Mobile and Industrial Systems

(IoTSys’15, companion event of MobiSys’15).

• Presentation of said publication at IoTSys’15 in Florence.

• Submission of co-authored paper “RIOT: Reconsidering Operating Systems

for Low-End IoT Devices” [36] to the 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’16).

• Support, minor fixes and maintenance for implementations of other compo-

nents of GNRC’s and devices or modules implementing netdev or conn, in-

cluding

– GNRC’s UDP module,

– GNRC’s TCP module,

– GNRC’s RPL module,

– GNRC’s capability to process IPv6 extension headers,

– the xbee shield IEEE 802.15.4 driver,

– the at86rf2xx IEEE 802.15.4 driver,

– a DNS implementation based on conn, and

– a TFTP implementation based on conn.

3
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Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

(a) ISO/OSI stack

HTTP DNS

TCP UDP

IPv4/IPv6 OSPF/BGP

Link Layer

(b) traditional TCP/IP stack

CoAP DNS

UDP

IPv6 RPL

6Lo

Link Layer

(c) IoT stack by IETF

Figure 1.1: Comparison of network stack architectures

• Major contributions to the RIOT community in documentation, networking,

system libraries and third-party package support, too numerous to name indi-

vidually.

1.4 The Internet of Things

1.4.1 Definition

Used primarily as a non-descriptive buzzword, the term “Internet of Things (IoT)”

has been circulating for a while now, and depending on who you ask, there will

be a different understanding of what it means. As such, there is still no unifying

definition, depending on what the people and organizations working with it are

focusing on. In general, there are three perspectives [74] that either focus

• on the Internet,

• on things, or

• on data

The most unifying definition of the IoT I found is:

An open and comprehensive network of intelligent objects that have the

capacity to auto-organize, share information, data and resources, react-

ing and acting in face of situations and changes in the environment [59].

Resulting from this there exist multiple silo solutions today [16] that are connected

via a cloud solution in the best case or not connected at all.

For the purpose of this thesis I will focus on a definition based on the Internet,

specifically the protocol suite specified by the IETF. For the sake of simplicity, I

4
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will refer to this suite as the IoT stack (see Figure 1.1c). Since it builds upon open

and established Internet standards, I regard it as the most accessible solution.

The IoT stack tries to be as compatible as possible to the traditional TCP/IP

protocol suite used in the conventional Internet, while honoring the constraints given

for the IoT devices they are targeted at:

• Large address space: Many devices will join the IoT. For every human

being on this planet the number of devices will probably be in the double-digit

range, easily putting the number in the billions [27].

• Energy requirements: Nodes intended for the IoT are often required to run

on battery and ideally for a long time – i.e. many years – since they might

be in hard to reach places. As a result, most devices commonly also have the

following constraints:

– Low processing power: Most devices geared towards the IoT stack are

microcontrollers and usually only have clock rates of a few MHz.

– Memory: Likewise, the memory is only available in terms of KiB, or

MiB at best.

– Lossy medium: Most IoT technology is based around wireless com-

munication, which is far less reliable in packet delivery rate than wired

communication. To fulfill the previously mentioned energy requirements,

many Link Layer (L2) technologies also only have very sporadic Medium

Access Control (MAC) protocols with long node sleeping cycles.

The IETF classifies the kind of devices we are talking about as class 0 and class 1

devices [8].

Based on these constraints, the IETF basically worked their way up the traditional

TCP/IP stack. The resulting IoT protocol suite can be seen in Figure 1.1 and is

generally understood to be comprised of the 6LoWPAN adaptation layer (at least

for IEEE 802.15.4), IPv6, UDP, and CoAP, which I will briefly summarize in the

following sections.

1.4.2 IPv6

There are a number of reasons why the Internet Protocol, Version 6 (IPv6) is best

suited for the IoT. First of all, we need to support an Internet Protocol (IP) to be

able to speak with other TCP/IP stack implementations i.e. the traditional Internet.

Furthermore, IPv6 provides the IoT with another advantage that the alternative –

the Internet Protocol, Version 4 (IPv4) – can’t provide: Its large 128-bit address

space. As stated in subsection 1.4.1, the IoT will consist of billions of nodes and the

32-bit address space of IPv4 is already depleted [43]. Another advantage is IPv6’s

focus on multicast rather than broadcast which could be used to save energy1.

1Not for IEEE 802.15.4 though, since it only supports broadcast.

5
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Though IPv6 itself isn’t any different from the traditional TCP/IP stack, the

Neighbor Discovery Protocol (NDP) – which utilizes the Internet Control Message

Protocol, version 6 (ICMPv6) – needed some adjustments (referred to as 6Lo-ND in

the remainder of this thesis), largely because of the architecture of IEEE 802.15.4

Wireless Personal Area Networks (WPANs)s and the different address formats of

IEEE 802.15.4, but also to disseminate compression contexts of 6LoWPAN through-

out a WPAN.

1.4.3 6LoWPAN

IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) is an adaptation

layer protocol which allows for IPv6 communication over IEEE 802.15.4 WPANs (the

link layer of the ZigBee stack) [64]. Later adaptation layers based on 6LoWPAN

for other L2 as ITU G.9959 [10] and Bluetooth low energy [66] were introduced and

further adaptation layers are in the making (DECT ULE [60], MS/TP [58], and

NFC [44] to name a few). These other adaptation layers often share the 6Lo prefix

of 6LoWPAN (as designated in Figure 1.1) in their name. When talking about

6LoWPAN however, one usually refers to communication over IEEE 802.15.4. As

this is the modus operandi for the most part during my implementation work, I will

use 6LoWPAN as an example for all 6Lo protocols in the remainder of this thesis.

Besides allowing for the formation of mesh networks, IEEE 802.15.4, at least up

until the 2011 version of the standard, is also only able to send frames of at most 127

bytes [49]. This is in direct contradiction to IPv6’s required minimum Maximum

Transmission Unit (MTU) of 1280 bytes [64].

To achieve transmission of IPv6 packets regardless of the size constraints of IEEE

802.15.4, 6LoWPAN provides a byte-optimized packet fragmentation (beyond the

fragmentation provided by IPv6 itself) and both stateless and stateful header com-

pression. For stateful compression, context information is disseminated throughout

the network by NDP.

To utilize the mesh functionality of IEEE 802.15.4, 6LoWPAN provides a mesh

addressing header and an associated broadcast header that can be appended to the

frame to use the so called “mesh-under” communication. For “route-over” commu-

nication (i.e. to leave routing to a routing protocol, see subsection 1.4.4), this header

can be skipped.

It achieves these different functionalities by using the first byte of the IEEE

802.15.4 frame payload as a dispatch to identify the type of header. Multiple header

types can be strung after one another, but the order is defined:

1. Mesh addressing header

2. Broadcast header

3. Fragmentation header

4. Compression header

6
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Internet

6LBR

6LR

6LR

6LN

6LN

6LR

6LR

6LN

6LR

6LN

6LN

Figure 1.2: A 6LoWPAN route-over topology

As for the architecture of a 6LoWPAN network, in route-over mode (which I will

use for my experiments) there are three node types (see Figure 1.2) [76]:

• 6LoWPAN Node (6LN): a host or router in a WPAN.

• 6LoWPAN Router (6LR): a router inside a WPAN that is able to forward

IPv6 packets.

• 6LoWPAN Border Router (6LBR): a router at the intersection between

a WPAN and another network.

6LRs are not present in a mesh-under topology, but the other nodes are.

For a more in-depth description of the protocol, it is highly recommended to read

the 6LoWPAN specifications [64, 41, 76], but for the purpose of this thesis, this

summary will suffice.

1.4.4 RPL

The Routing Protocol for Low-Power and Lossy Networks (RPL) [89] can be used

for multi-hop routing in IoT-subnets. Since the IoT as it is described here is closely

related to Wireless Sensor Networks (WSN), it assumes the network to be target-

oriented: There are multiple nodes in the subnet that primarily communicate using

one higher-ranking router – the “target” (and usually the 6LBR; see subsection 1.4.3)

– with the rest of the Internet. As such, the network is structured as a Destination-

Oriented Directed Acyclic Graph (DODAG), a graph consisting of directed edges,

without cycles, and with all paths leading to a single destination – the DODAG root

(see Figure 1.3).

All communication for RPL is over ICMPv6, meaning RPL works over IPv6, but

not IPv4. The message types send behave as follows:

7
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root

router

leaf

router

leaf

leaf

Figure 1.3: A RPL DODAG in the LoWPAN of Figure 1.2 with the red arrows
representing preferred routes and gray arrows representing secondary
routes (faded lines represent a working connection)

• All nodes in the network send DODAG Information Objects (DIOs) pe-

riodically to inform other nodes of their presence in a DODAG. Based on this

information, nodes that join a network can choose the parent with the best

route to the DODAG root. It is also possible for a node to request a DIO with

a DODAG Information Solicitation (DIS).

• To be able to take routes downstream (from the DODAG root to another

node in the network) all nodes except the DODAG root send Destination

Advertisement Objects (DAOs) to inform about the nodes they are able

to reach or none if they are one of the most downstream nodes – a leaf.

Note that RPL leaves are not the same nodes as 6LN in a 6LoWPAN (see subsec-

tion 1.4.3), as 6LN don’t have any forwarding capabilities, while leaves are forward-

ing routers that just don’t have any children in the RPL DODAG. Non-forwarding

6LN hosts, while not being part of the DODAG itself, can connect to a leaf (or any

other router in the DODAG for that matter) by just setting them as their default

router.

A DODAG is usually identified by one of the RPL root’s global unicast addresses

(the DODAG ID).

1.4.5 UDP

As already stated in subsection 1.4.1 and subsection 1.4.3, most IoT L2 come with

large delays, high packet loss, and small payload lengths. All of these make the

Transmission Control Protocol (TCP) with its reliable and ordered data transmission

and congestion and flow control mechanisms unsuitable for the IoT. Especially the

8
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latter is a critical disadvantage compared to lossy networks: Congestion control

reduces the retransmission rate, rather than increasing it since it assumes that packet

loss is a congestion problem rather than an inherent property of the medium [63].

For these reasons, the far simpler User Datagram Protocol (UDP) is the preferred

transport layer protocol for the IoT (though TCP is of course also possible, albeit

discouraged).

Alternative transport layer protocols such as for example Datagram Congestion

Control Protocol (DCCP) [46] or Stream Control Transmission Protocol (SCTP) [78]

are also possible2, but are currently not considered due to their low popularity.

Like IPv6, UDP has no modifications for the IoT (though 6LoWPAN provides

header compression for it).

1.4.6 CoAP

The easiest way to describe the Constrained Application Protocol (CoAP) [77] is to

view it as a binary version of the Hypertext Transfer Protocol (HTTP) over UDP

(or other alternative transports, like DCCP or SCTP [77, section 3]). It is designed

to be easily translatable to HTTP by providing the framework to implement a

Repesentational State Transfer (REST) API.

Since UDP does not provide any reliability, CoAP provides this optionally via its

messaging layer. Above the messaging layer the requests/response layer is used to

implement the RESTful behavior.

As with HTTP, the way to represent the delivered data can be chosen freely for

the most part and can e.g. be JavaScript Object Notation (JSON) [11], Extensible

Markup Language (XML) [12], Concise Binary Object Representation (CBOR) [9],

or even Hypertext Markup Language (HTML). But rather than using the string rep-

resentation of the Multipurpose Internet Mail Extensions (MIME) type, CoAP uses

a standardized sub-registry of numeric identifiers to identify the data representation

format to reduce overhead in the CoAP headers [77, section 12.3].

For the scope of this thesis, I will mainly focus on the layers below and including

the transport layer, so CoAP will not be mentioned as much in the remainder of

this work. This section is only included to complete the full IETF IoT stack.

1.5 Related Work

The idea of a modular network architecture to both provide a clear interface and

reduce code duplication (and in turn code size) certainly isn’t a new idea at all. The

UNIX STREAMS framework [71] already provided a very loosely coupled approach

to modularity at the very beginning of the Internet, with data-handling modules

2They can even be used with CoAP (see subsection 1.4.6)

9
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(including network protocol implementations) only communicating via input and

output queues.

Later research into embedded networking such as for example with the x -

Kernel [42] also picked up the idea of modularity to provide a micro-kernel specifi-

cally for development of network protocols on embedded systems.

In the modern IoT that I drafted out in section 1.4 we are not only faced with the

constraints given by the hardware, but also with the fact that the range of hardware

platforms is vastly heterogeneous. As such, most operating systems either decided

to support only one platform – as for example mbed OS [2] (ARM) or LiteOS [14]

(AVR) – or went for a “one-fits-most” approach as e.g. the previously mentioned

Contiki [23], FreeRTOS [5], TinyOS [57], and of course RIOT [4, 3], which is the

focus of this thesis.

Both TinyOS and Contiki come with their own network stack implementation:

BLIP [67] and uIP [21] respectively. Both are implementations of the IoT stack

presented in section 1.4. Furthermore, Contiki also comes with the more modular

RIME [22] stack.

Outside of the operating system realm there are also some stand-alone network

stacks. In this thesis I examined lwIP [20] (see section 4.2), a modular full-featured

network stack, designed for low memory consumption, and emb6 [39] (see sec-

tion 4.3), a fork of Contiki’s uIP stack, that allows it to run without Contiki’s

proto-threads [24].

Due to their independence from operating systems, I even ported these two stacks

to RIOT during my thesis to have a reference for comparison with GNRC. However,

we decided against making either of them the default stack of RIOT for a number

of reasons. lwIP e.g. did not have any 6LoWPAN support at the time when we

started and still lacks RPL support (see section 4.2) and emb6 was too close to the

paradigms of our old stack with all of the bad experiences we had had with it.

Other stacks we looked into were the NanoStack [50], which in later versions

became proprietary, and the CiAO/IP stack [7], which focuses on aspect oriented-

programming and is implemented in the AspectC++ dialect for this reason. Other

stacks proved to be very use-case oriented [61, 72, 91] or very restricted and not

extensible by design [17] and thus did not fit into our requirements (see subsec-

tion 3.2.1) at all.

1.6 Summary

This chapter explained the motivation for the design and development of an open

source network stack for the IoT in that only free and open source software can

provide the needs for privacy and security needed by the IoT and that only openness

may lead to a well established technology. To set-up a frame of reference for the

10
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related work I then settled on a definition of the IoT and described the constraints

and requirements of this definition:

• A large address space and

• energy requirements that result in low processing power, low memory capabil-

ities, and lossy transmission mediums.

I also specified that in the context of this thesis, the connectivity provided by

protocol suite outlined by the IETF is what I mean by IoT. The protocols that make

up this suite are the link-layer adaptation protocol 6LoWPAN to allow IPv6 traffic

over IEEE 802.15.4, some optimizations to the NDP of IPv6, the routing protocol

RPL, and the application layer protocol CoAP, which allows HTTP-like REST-

communication over lossy transports like UDP. This allows for easy integration into

the traditional TCP/IP Internet and the World Wide Web.

Finally, I put this thesis into broader context by providing an overview of some

related work, both in the world of modular network stacks and network stacks im-

plementing the IoT stack protocol suite. The idea of highly modularized networking

architectures certainly isn’t new, as solutions for this – even in the embedded world –

go back to the 1980s. Established operating systems come with their own embedded

solutions and platform independent solutions exist as well.

11



2 The RIOT Operating System

2.1 Introduction

The network stack designed in the context of this thesis was originally developed

for the RIOT operating system. As such it is important to understand at least the

basic operation and network related Application Programmer Interfaces (APIs) of

this system.

RIOT is a real-time operating system for the IoT and was developed originally

by Freie Universität Berlin, HAW Hamburg and INRIA. It has its roots in software

previously provided by all three institutions. Today it is developed by a worldwide

community under the LGPLv2.1 license.

The following chapter gives a short overview over RIOT’s kernel and its three main

components: the scheduler, the IPC, and its mutexes (section 2.2). Likewise, we

look into other components specifically intended for networking access: the common

network device API netdev (section 2.3) and the transport layer connectivity API

conn (section 2.4). This will allow us to put the GNRC network stack described in

chapter 3 into the perspective of the operating system it was developed for.

Lastly, I take a short look into the third-party package system of RIOT (sec-

tion 2.5), which allowed me to integrate the other two stacks described in chapter 4

for comparison.

2.2 The Kernel

2.2.1 Overview

Traditionally, operating system kernels fall into two categories, although there are

hybrid solutions today: monolithic kernels and micro-kernels. Monolithic kernels,

such as for example the Linux kernel, include all of the functionality and drivers

the operating system needs to run and manage the hardware it is running on.

Micro-kernels, on the other hand, only include the most basic functionalities such

as memory management, process and/or thread scheduling and basic Inter-process

Communication (IPC). Everything else is provided by external modules that run in

the same space as user software [80].

The RIOT kernel is a real-time capable micro-kernel [3]. Real-time capability

here refers to soft real-time capabilities [37], as the RIOT scheduler guarantees

a thread to deterministically keep a deadline, but there also will be no harmful
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behavior if that deadline is not met [36]. As most platforms supported by RIOT

don’t offer a Memory Management Unit (MMU), the kernel only extends its memory

management to assigning a memory stack to a thread on initialization, but to date

offers no protection for that memory region. Additionally, the RIOT kernel also

provides capabilities to synchronize memory access between threads via mutexes.

2.2.2 Scheduling

The RIOT scheduler uses a very simple tickless scheduling policy of complexity O(1):

The thread with the highest priority not blocked by given circumstances (e.g. waiting

for IPC message) runs until interrupted by the Interrupt Service Routine (ISR). If

all threads are blocked, a special idle thread is run, which allows the device to go

into a low-power mode [3]. This way, the soft real-time capabilities are provided

by using ISR triggers for event management. It also allows the operating system

to hold the energy consumption requirements set by the IoT application realm (see

subsection 1.4.1), as no periodic wake-ups are required as they would be needed for

time-based scheduling.

2.2.3 Inter-process Communication

The IPC allows not only for blocking and non-blocking, but also for synchronous

and asynchronous communication [52].

Messages consist of both a content field and a type field identifying the kind of

content. In addition to this, they contain a PID field that identifies the sender.

Synchronous mode is the default mode of communication. To activate asyn-

chronous communication, a thread needs to initialize its message queue; however, if

this message queue is full, the kernel will fall back to synchronous communication.

In case of blocking communication, the thread will be blocked and the sched-

uler will run the next waiting thread in the thread queue. The functions for

blocking communication are msg_send() and msg_receive(). Additionally, there

is msg_send_receive() which allows the receiving thread to reply contextually with

msg_reply().

For non-blocking communication the message needs to be sent in asynchronous

mode, otherwise the message will be dropped. To use non-blocking communication,

a user must call the functions msg_try_send() and msg_try_receive().

2.2.4 Synchronization Via Mutexes

To synchronize memory access external to a thread’s memory stack between different

threads, the RIOT kernel offers a simple mutex (mutual exclusion) scheme.

Mutexes can be locked and unlocked with mutex_lock() and mutex_unlock() re-

spectively. mutex_lock() is blocking, while mutex_unlock() is not. As an alternative,

13
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Figure 2.1: RIOT’s networking architecture

the API also provides mutex_unlock_and_sleep(), which puts a thread to sleep after

the mutex was unlocked, and the non-blocking locking function mutex_trylock().

2.3 The Network Device API – netdev

netdev is the network device driver API used by RIOT to abstract a network device

and allows access to network devices independent from the device itself. Thanks to

this API, porting a network stack is rather simple, since its hardware abstraction

only needs to be wrapped around netdev (see Figure 2.1).

The netdev_t struct is the centerpiece of the API and contains as its members

the driver itself, an event callback to handle events from the device, and a context

variable that might be needed by the upper layers to identify themselves. The driver

is a set of well-defined functions:

• init() is used to initialize a network device.

• send() is used to send a packet over the network device. It receives a list of

(data, length) pairs as parameters to allow fragmented data to be sent over the

device (so that e.g. headers and payloads can be stored in different places).

• recv() is used to receive a packet from the network device. It takes a buffer

as parameter and returns the length of the packet currently in reception. If no

buffer is given (i.e. the pointer to it is NULL), the length of the current packet

is given, but in contrast to the case in which a buffer is given, the packet won’t

be marked as received. This can be used e.g. to allocate just enough memory

before actually copying data into a network stack’s buffer.

• get() is used to get an option value from the network device. Options are

identified by the netopt data type. Additionally, the function receives a buffer

to store the value. The function returns the value’s length on success or a

negative value on error or if the option is not supported by the device.

• set() to set an option value to the network device. netopt is also used here

to identify an option and a buffer is given holding the desired value. On error,

14



2 The RIOT Operating System M. Lenders

ISR context

Thread context

ISR Device Driver Event Handler

Receive pkt.

netdev::event_cb(NETDEV2_EVENT_ISR)

return

netdev::driver::isr()

netdev::event_cb(RX_COMPLETE)

netdev::driver::recv()

return

return

Figure 2.2: netdev event flow with RX_COMPLETE as an example

or if the device does not support the device, the function returns a negative

error.

• isr() to tell the driver that an ISR context triggered an external event handler

and now needs more information on the event.

As with all events in RIOT, an event to the network device is handled by the ISR

(see subsection 2.2.2). However, we can’t stay in the ISR too long so that other

interrupts can be handled as fast as possible and to keep real-time capabilities. To

achieve this, an external event handler can register an event callback to the netdev.

The ISR handler of the network device driver uses this event callback to tell the

external event handler that an event happened (see Figure 2.2 for a packet receive

event). It is then up to the event handler to make a context switch from the ISR

to a thread context. How this happens is out of scope of netdev itself, but using

the IPC is an option. In the thread context it then uses the isr() function to notify

the driver that we are indeed now in thread context and want more information on

the event. The driver is then able to identify the event based on its own setup and

notifies information on it back to the event handler using the event callback.

2.4 The transport layer connectiviy API – conn

conn is a collection of APIs to allow an application to access transport layer protocols

network stack independent (see Figure 2.1). The main design goal was to offer a

unified API for applications to implement against, independent of which network

stack is used. Compared to its POSIX counterpart sockets, it is much more trimmed

down and designed with the specific protocol in mind. The conn API for UDP

conn_udp e.g. has no connect() call as a socket would have, since UDP is connection-
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less. This allows the implementation of a conn for a stack and protocol to be very

slim.

At the moment there are APIs defined for

• Raw IP (both IPv4 and IPv6) (conn_ip)

• TCP (over both IPv4 and IPv6) (conn_tcp)

• UDP (over both IPv4 and IPv6) (conn_udp)

All three APIs currently contain ways to both send and receive data and to set

and get the addresses associated with a connectivity object. conn_tcp additionally

supports functions to establish a connection.

2.5 Third-party Package System

RIOT is also equipped with the means to include third-party software – called pack-

ages (or pkg for short) – into a binary, not dissimilar to BSD ports [84]. Packages are

comprised of a Makefile and a Makefile.include file that describe how to integrate

the package into RIOT and a collection of patch files that describe how to change

the third-party software to make it work with RIOT. Currently there is support

for both Git- and HTTP-based sources, but since the integration is based on GNU

Make [32], any other source type such as e.g. SVN is also possible.

For this thesis I provided a port for lwIP (see section 4.2) and emb6 (see sec-

tion 4.3) using this system, but other software was ported as well. Among them

are:

• CCN-lite [15], a network stack focused on Information-centric networking

(ICN).

• libcoap [6], a high-level CoAP implementation providing wrappers around sock-

ets to implement both CoAP clients and sockets.

• microcoap [79], a low-level CoAP implementation, providing capabilities to

expose end-points for a CoAP server application.

• OpenWSN [86], a network stack which provides 6LoWPAN over IEEE

802.15.4e’s Time-Slotted Channel Hopping (TSCH) MAC mode.

2.6 Summary

In this chapter we looked into the inner workings of the RIOT operating system and

its network related APIs as well as its third-party package management.

The three main components of RIOT’s real-time capable micro-kernel are its

• tick-less, preemptive scheduler,

• the IPC that allows for both non-blocking and blocking, and synchronous and

asynchronous data communication between threads, and
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• the mutual exclusion capabilities (mutex) that allow for synchronized access

of global memory regions.

The common network device API netdev provides generalized access to all net-

work devices supported by RIOT as well as way to bootstrap ISR-triggered events

generated by the driver. This allows for easy integration of network devices into the

RIOT ecosystem without ever touching non-device related code. To show-case the

event-bootstrapping capabilities I described the use-case of receiving a packet.

On the other end of a network stack the transport layer connectivity API conn

allows for access to any given network stack from an application. Contrary to POSIX

sockets they don’t provide a generalized API for all possible protocols, but provide

a subset of functions for each protocol supported by a stack.

The third-party package management pkg of RIOT allows for easy integration of

third-party software similar to BSD ports. Makefiles describe a way to both fetch

the piece of software from a remote source and how to adapt them to run with

RIOT.
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3 The GNRC Network Stack

3.1 Introduction

GNRC (short for “generic”) was developed in 2015 [69] as a replacement for the

previous monolithic network stack1 of the RIOT [3, 4, 88] operating system, with

H. Petersen and myself as the main driving forces behind the effort.

I developed most of the IPv6 and 6LoWPAN parts of the stack, including NDP

and 6Lo-ND.

Since it is part of RIOT, the stack is published under the LGPL version 2.1

and new functionalities and optimizations are currently in development by RIOT’s

worldwide community.

3.2 Design Objective

I already named a number of constraints in subsection 1.4.1 that protocols in the

IoT are facing:

• Large address space

• Low energy consumption

– Low processing power

– Memory constraints

– Lossy communication medium

When actually implementing a network stack, we also face the problem of the

high heterogeneity in embedded systems in the IoT in many categories such as ap-

plication space or hardware platforms, which I also mentioned in subsection 1.4.1.

The traditional approach to deal with these problems is to provide multiple network

stacks for a specific setup. This approach allows for very specific optimizations in

that use-case. However, it naturally exacerbates the effort that needs to be put into

implementation, testing, and other maintenance.

From its inception GNRC was designed to be both flexible enough for this het-

erogeneity but also efficient and small enough to hold the constraints we are facing

in the IoT in general [69].

1It was very loosely based on uIP.
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3.2.1 Requirements

Based on the foundations I stated above, I identified both functional and non-

functional requirements, which I list in the following sections [69].

Functional Requirements

Focus on IPv6 With the big address space requirements and our focus on IETF

protocols, focusing on IPv6 first was a natural decision. This way, we allow for both

end-to-end connectivity between IoT devices and the fringe Internet2 and are also

able to make use of the IoT stack aimed at low-power and lossy networks, which

I presented in section 1.4. Regardless, the stack should also be able to have an

implementation of IPv4 or even more obscure network protocols later on.

Full-Featured Protocols that are implemented for GNRC should be implemented

as completely as possible per their specification as a long-term goal, so the possibility

to extend a module in the future must always be provided. This way we can attempt

to find a generic solution that fits multiple use-cases instead of constraining the

implementation by design.

Support for Multiple Network Interfaces The usual scenario in the IoT is a single

node with one radio, but as seen in subsection 1.4.3, there is at least one border

router needed per network. Usually, those are connected to the Internet via a wired

connection such as Ethernet, but with the advent of new devices that support mul-

tiple radio standards [33], border routers between two different radio standards are

also conceivable. For these reasons, support for multiple interfaces is required.

Parallel Data Handling Some embedded network stacks such as uIP [21] and

emb6 [39] (see section 4.3), but also the predecessor of GNRC, try to save memory

by reducing the packet buffer essentially to a single array that is able to store exactly

one network packet at a time. While this might be suitable for some use-cases, it

makes parallel data handling very hard. For scenarios with NDP [65] involved alone

the protocol’s implementation might need to queue packets for address resolution.

Moreover, this often leads to massive data duplication as every protocol starts to

establish its own local buffer, especially if heavy rework needs to be performed on

a packet (e.g. with 6LoWPAN). While problems such as these might be solved by

viewing them as special cases and copying packets around if need arises, I argue

that designing the stack for parallel data handling from the ground up results in a

cleaner and ultimately smaller code size.

2Term sometimes used for non-IoT Internet [75].
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Non-Functional Requirements

Open Standards and Tools Since GNRC is part of the RIOT operating system

it is of course – like the operating system itself – free software. I am convinced –

as stated in section 1.1 – that this will ultimately lead to more secure and better

maintained software [40]. Furthermore, the historic development of the Internet

itself speaks for the fact that openness is the way to success: The most prevalent

standards today such as IP or L2 technologies standardized by the Institute of Elec-

trical and Electronics Engineers (IEEE) (e.g. WiFi or Bluetooth) are those that

were specified openly or were released into the public domain later on. To achieve

interoperability despite the heterogeneity of IoT devices, a network stack must ad-

here to this kind of standards. Besides, the development environment needs to be

accessible and the software itself needs to be developed with open tools and well-

known paradigms. Experiences with e.g. TinyOS’s nesC language [56] show that

exotic tools or paradigms can become a hindrance in reaching a significant number

of developers to maintain a software in the long run.

Configurability While the stack needs to be adaptable to a number of use-cases,

the set of configurable parameters should be held relatively small and some options

should even aggregate from finer granulated options. However, having multiple

degrees of freedom in the configurability means that understanding all of them will

be harder for newcomers.

Modularity Besides providing good encapsulation – and thus less entangled code –

a clean interface between modules also has the advantage of providing extensibility

and easier testability for a module. The implementation of one component can, for

instance, easily be switched out for another and thus provide different or extended

functionality. But as with configurability, the modularity should rather be left on

the coarse side in order to make the code more accessible to newcomers.

Low Memory Footprint We decided to not go for the lowest configuration possible,

since we don’t believe that supporting class 0 devices as defined by [8] would be

possible with the given functional requirements. As such, class 1 devices (≈ 10 KiB

RAM, ≈ 100 KiB ROM) are our intended platform classes. Since one still wants to

put application and other system code in the memory, we aimed for ≤ 30 KiB ROM

and ≤ 10 KiB RAM3 for a configuration with one interface, 6LoWPAN, IPv6, RPL,

and UDP.

Low-Power Design IoT devices are expected to run for years on battery power as

already mentioned in subsection 1.4.1, so low-power operation of all components of

an operating system are required. Optimization for such operations have been shown

3Devices of this type have proven to have more RAM than just 10 KiB most of the time.
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Figure 3.1: GNRC architecture overview

to be hard from experience, so it has to be included by design from the bottom up.

This means I have to

a. allow for easy configuration of different protocol combinations in all layers

down to the physical layer to adapt for given scenarios, and

b. the implementation and its data-structures must be suitable for maximum

sleep intervals for the CPU.

3.3 Architecture

3.3.1 Overview

Based on the experience with the previous network stack, GNRC was designed not

only to be highly modular, but also to have its modules be easily interchangeable.

By this design, most of GNRC ’s modularity can also be found in the code’s file

structure.

It is not dissimilar to UNIX STREAMS [71] in that it allows chaining of multiple

modules behind one another through a common API. But while STREAMS uses

input and output queues to exchange messages between the modules, GNRC utilizes

RIOT’s thread-targeted IPC: Every module – i.e. networking protocol – runs in its

own thread which in turn has a message queue. The latter is optional in RIOT

(see subsection 2.2.3) in general and even deactivated by default but is required for

working with GNRC. The messages are in a well-defined format which is referred to

as “netapi” in GNRC.

To determine which modules are interested in the packet next, a thread can look

up potential receivers in a registry called “netreg” using the packet’s type. Mod-
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Figure 3.2: An example of a packet in transmission in the GNRC packet buffer

ules that are interested in a certain type can register themselves with this registry.

Throughout the traversal time through the stack a packet is stored in GNRC ’s

packet buffer pktbuf.

With this architecture, GNRC achieves both the required modularity and an easy

way to prioritize different parts of the stack – by assigning different priorities to the

threads running the protocols and letting the operating system’s process scheduler

act upon these priorities. The trade-off is a slightly slower stack, but the IPC on

RIOT is only one order of magnitude slower than direct function calls on typical

IoT hardware [69, section 4.1], as the comparison with function-based stacks as lwIP

(see section 4.2) or the event-queue polling emb6 stack (see section 4.3) in chapter 5

will show.

3.3.2 The Packet Buffer – pktbuf

Packets in GNRC are stored in a packet buffer called pktbuf with variable length

chunks called “packet snips” (see Figure 3.2). They are usually used to differentiate

between different headers and payloads. The data of the packets as well as the

describing structures of the packet snips are stored in arrays allocated in static

memory, but the API can in theory also handle dynamic allocation on the memory

heap. Packet snips can be marked with a type to identify the content of the packet.

Usually we refer to a list of packet snips in this context as packets, so the first

member as the list’s head is sometimes referred to synonymously as the packet. As

such, the type of the first packet snip is usually referred to as the overall packet’s

type. To create a packet snip in pktbuf a user can use the function gnrc_pktbuf_add

() which receives all user-controllable fields of a packet snip (next, data, length,

and type) as arguments and returns the new snip.

Packet duplication throughout the stack is kept to a minimum, since data is copied

or moved as little as possible on its way from network interface to application –

ideally only once at each end-point of the stack – and vice-versa. As a result,

the structures describing the packet (marked as the “packet snip descriptor” in
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Figure 3.2) can be stored independently of the actual data, so marking a packet

header does not require moving the data around.

In order to be thread-safe, a packet snip keeps track of the threads using it via

a reference counter (named users in Figure 3.2). The reference counter can be

manipulated by the user with the gnrc_pktbuf_hold() and gnrc_pktbuf_release().

The first increments the counter, while the latter decrements it. When the counter

reaches 0, the packet will be removed from the packet buffer.

If a thread wants to write to the packet and the reference counter is greater

than one, the packet snip and all its next pointers will be duplicated copy-on-write

style and the reference counter of the original snip is decremented by one. To keep

duplication as low as possible, only pointers that can reach the current snip will be

duplicated, giving a packet a tree structure in the packet buffer. For this reason,

the order of the packet snips for a packet in reception is reversed – starting with

the payload, ending with the header of the lowermost layer – while a packet in

transmission is in the same order it will be transmitted in. This way, the number

of pointers required to create such a tree structure is as low as possible. However,

it needs to be pointed out that packets in reception will still keep their data in

the received order for the most part. Only the packet snip descriptor list marking

out the data is in reversed order. The reference counter of a parent will always

be the sum of the reference counters of its child, because duplication also implies

the decrementing of the packet snip’s reference counter. This way, when a packet

(i.e. the first snip in a packet snip list) is released from a thread, its own snips will

be removed from the packet buffer, while the elements it shares with its copy are

not (see Figure 3.3).
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The functionality described in this paragraph is implemented in the

gnrc_pktbuf_start_write() function.

If a received packet is handled by a protocol implementation it can mark its header

using the function gnrc_pktbuf_mark(): A function that allows for the creation of

a new packet snip representing the header. It has the length of the header and

points to the original beginning of the old payload of the packet. The packet snip

representing the payload is then updated to point to the offset of that header and the

length of the header is subtracted from its length. It inherits the reference counter

from the rest of the payload. To adhere to reception order, the payload is kept as a

head of the packet snip list, while the new snip is inserted after the payload snip.

For sending a packet, a protocol expects a higher-layer protocol to prepend a

header of the protocol’s type to acquire addressing information like IP addresses or

ports and no further parsing is required.

The advantages of storing packets this way is that we

1. are able to handle multiple packets at once, as the number of packets is not

directly linked to the size of the buffer,

2. save memory by allowing the length of the packet to be dynamically allocated

instead of using fixed-sized chunks that might not be used to their full size,

and

3. avoid duplication throughout the stack, since it is a centralized buffer that every

protocol implementation is able to use instead of keeping its own buffer (and

save additional memory this way).

This way, I already allowed for two of our requirements for subsection 3.2.1 to be

fulfilled: parallel data-handling and low-memory footprint. One could even argue

that the avoidance of duplication saves energy, since the overall execution time is

reduced.

Of course, we risk external fragmentation with this design, but I argue that due

to the short lifetime of a packet in the buffer (only during its way through the

stack) and the regularity in size of the transferred data, this effect will be negligible;

experience from working with the packet buffer in real application settings confirm

this argument.

The GNRC_PKTBUF_SIZE macro determines the buffer’s size.

In summary, the operations provided by pktbuf are the following:

• gnrc_pktbuf_add() to allocated a packet in the packet buffer,

• gnrc_pktbuf_hold() to increment its reference counter,

• gnrc_pktbuf_release() to decrement its reference counter and to remove it

from the packet buffer if the reference counter reaches zero,

• gnrc_pktbuf_mark() to mark a header in the packet, causing the creation of a

new packet snip, and
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• gnrc_pktbuf_start_write() to get privileged write access to a packet.

Additionally, some auxiliary functions not explicitly mentioned here are provided

that help with data handling or conversion to other types. If they are mentioned in

the remainder of the thesis, their functionality will be described there.

3.3.3 GNRC’s Module Registry – netreg

At its core, the registry for GNRC (netreg) is a simple lookup-table that maps the

type used to identify protocols as previously mentioned in subsection 3.3.2 to a list of

PIDs (the receiving threads for the packet type). But an additional dimension (the

”demultiplexing context“) was added to allow threads the registration for certain

protocol specific contexts (e.g. ports in UDP). GNRC_NETREG_DEMUX_CTX_ALL was

added as a special context for all protocols, to allow for registration for packets of

all contexts.

E.g. if a thread wants to send a message to a certain UDP port, it looks up

the protocol type GNRC_NETTYPE_UDP with a demultiplexing context that equals that

UDP port in the netreg using the function gnrc_netreg_lookup(). Every PID in

the registry that meets both of these parameters would be a target for a message

containing the UDP packet that has this port.

3.3.4 A Common Inter-Modular API – netapi

The netapi is the central API used by GNRC to communicate between the network

layers that are registered to the netreg. It was designed to be as simple and versatile

as possible so that even the most exotic network protocol can be implemented against

it. I also wanted it to be as modular as possible to make it both easily extensible

and testable. Its generic nature is what gave the GNRC network stack its name,

as it could in fact be used independently from GNRC, e.g. to wrap a network stack

implemented in hardware as it is provided e.g. with the CC3000 network device [83]

(see Figure 3.1).

It is comprised of two asynchronous message types that do not expect a re-

ply and two synchronous message types that are sent with msg_send_receive()

(see subsection 2.2.3) and expect a reply in form of a message with the type

GNRC_NETAPI_MSG_TYPE_ACK.

The two asynchronous message types are:

• GNRC_NETAPI_MSG_TYPE_SND, used to send packets (i.e. passing them “down”

the stack). A pointer to a packet is expected to be in the data part of the

message.

• GNRC_NETAPI_MSG_TYPE_RCV, used to receive packets (i.e. passing them “up”

the stack). A pointer to a packet is expected to be in the data part of the

message.
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This is the only component of a netapi that is dependent on GNRC as it uses the

gnrc_pkt_t struct of pktbuf in order to communicate the data. However, since for the

communication itself only the data is important, it can be easily exchanged for more

general structures such as e.g. POSIX’s struct iovec to improve the genericness of

netapi. However, for reasons of simplicity in the API’s usage, I decided against this.

The synchronous message types are:

• GNRC_NETAPI_MSG_TYPE_GET to get an option value from a module. A netopt

value to identify the option (see section 2.3) and a buffer to store the value are

expected to be in the data part of the message. The GNRC_NETAPI_MSG_TYPE_ACK

reply contains either the length of the value or a negative value to report an

error or that the module does not support the requested option.

• GNRC_NETAPI_MSG_TYPE_SET to set an option value to a module. A netopt value

to identify the option (see section 2.3) and a buffer with the value are expected

to be in the data part of the message. The GNRC_NETAPI_MSG_TYPE_ACK reply

contains either the length of the value set or a negative value to report an error

or that the module does not support the requested option.

All of these message types are optional, but for the synchronous message types a

value needs to be returned via the reply message that reflects that the option is not

supported.

Note that for all of these messages, the semantics for netapi in general don’t go

beyond the ones specified. A network protocol that implements netapi however can

require certain preconditions on packets or option values handed to it and implement

behavior that goes beyond these specification. This way, the design goal to be as

versatile as possible is guaranteed.

3.3.5 Network Interfaces

Network interfaces in GNRC are also represented as threads and use netapi for

communication with the network layer. MAC protocols are implemented in the

network interface’s thread and access network device drivers directly through the

netdev API (see section 2.3) since especially TDMA-based MAC protocols need

access to the device with as little delay as possible.

As noted in the requirements, GNRC was written from the ground up to be a

multi-interfaced, embedded network stack that supports both 6Lo- and non-6Lo-

IPv6 communication natively just by providing multiple interface threads.

To keep the overhead for the stack itself low for handling L2 headers, every network

interface converts the header format of their L2 protocol to a general interface header

format – called netif header. This header contains the source and destination L2

addresses, their length and additional link metrics that can be utilized by the routing

protocol, such as e.g. the LQI and RSSI. A common conversion API for popular L2

protocols assures that no duplicate porting efforts are required.
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3.4 Description of Example Use-Cases

To showcase the interaction of the three main components of GNRC – netapi, netreg,

and pktbuf – I present the comparatively complex use-cases of sending and receiving

a UDP packet over 6LoWPAN (unfragmented). A graphical representation of these

use-cases can be seen in the sequence diagrams in Figures 3.4 and 3.5, but since

some operations take place module-internally, not everything that is happening is

shown in that figure.

To save some space I use a special notation in both text and figures:

1. While many functions, variables, and constants in the actual code of GNRC

(and in some of the text before) use a gnrc_ (or capitalized GNRC_) prefix to

associate it with the network stack’s module, I omit this prefix in this example.

2. Capital letter words of protocol names in function calls denote the protocol

type as it is used by pktbuf and netreg as described in sections 3.3.2 and 3.3.3.

3. ALL denotes the GNRC_NETREG_DEMUX_CTX_ALL demultiplexing context as de-

scribed in subsection 3.3.3.

4. The tree of packet snips representing a packet is listed as a list of scalars and

tuples [X, (Y,Z)], where X, Y, and Z are protocol types as noted in 2. and a

tuple representing a branching in the tree due to the copy-on-write mechanism

described on page 23.

5. netapi messages are described with a shortened type notation and simplify

GNRC_NETAPI_MSG_TYPE_X to NETAPI_X.

6. The data a netapi message carries in square brackets [] e.g. NETAPI_SND[pkt

=pkt] denotes a GNRC_NETAPI_MSG_TYPE_SND message carrying a packet named

pkt.

3.4.1 Reception of a UDP Over 6LoWPAN Packet

When a packet is received from an IEEE 802.15.4 device, it is handled with the

mechanism already presented in Figure 2.2 to get out of ISR (see Figure 3.4). Note

that GNRC uses the option of the netdev::driver::recv() method to use a NULL

pointer to get the length of the packet first in order to allocate that length of data

in the packet buffer using pktbuf_add(). Another call to netdev::driver::recv()

with the allocated data buffer fills it with the received data. After determining the

length of the IEEE 802.15.4 header we mark it in the data using pktbuf_mark()

and replace it with a previously allocated (again by using pktbuf_add()) general

L2 header – the netif header described in subsection 3.3.5. The remaining IEEE

802.15.4 header is released from the packet buffer using pktbuf_release(). The

make-up of the packet snip list in pkt is now [6LOWPAN, NETIF], with the 6LOWPAN

snip containing the whole 6LoWPAN datagram and the NETIF snip containing the

netif header. Without 6LoWPAN (e.g. with an Ethernet frame of Ethertype IPv6)

the packet snip list would look like this: [IPV6, NETIF].
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Since we are on an IEEE 802.15.4 interface we know to look for a 6LoWPAN

handler in the netreg using netreg_lookup() (but other default protocols can be

configured too or determined by a demultiplexing identifier like the Ethertype of

Ethernet) with ALL demultiplexing contexts and receive the PID to the 6LoWPAN

thread back. Here and in the following instances of netreg_lookup() I have to note

that for simplicity’s sake I only show a scalar PID being returned in Figure 3.4, but

a list of PIDs is actually returned (although, since only the 6LoWPAN thread is

registered in our scenario it would also just return a list of length 1). Since we only

have one handler we don’t actually need to call pktbuf_hold(), since we implicitly

hand over any privileges to the receiving thread when we hand it over to the handler.

Note however that we only leave it out in Figure 3.4 for all instances for simplicity’s

sake and to make it at least slightly easier to look at. In the code, this function is

called in any case with an incremental value of 0 in the case of this scenario, since

only one thread is a receiver of that message and the privileges to the packet are

implicitly given up after sending the message to another thread. To hand the packet

to the 6LoWPAN handler we hand it “up” the stack using a NETAPI_RCV message

with the packet pkt as its content.

The 6LoWPAN handler then first write-protects the packet as described on

page 23 using pktbuf_start_write() and, since we only have this thread referenc-

ing the packet, receives exactly the same packet back. If the reference counter of the

packet had been greater than 1 due to a pktbuf_hold() call, it would have received

a copy of pkt.

The 6LoWPAN handler determines that the packet contains a compressed IPv6

and UDP header and allocates space for the uncompressed instances in the packet

buffer using pktbuf_add(). Since we are receiving a packet the IPv6 header is ap-

pended to the UDP header.

After decompressing the compressed headers we mark them using

pktbuf_mark() (since the length of them depends greatly on their contents, we

have to do this afterwards) and replace them with the already allocated IPv6 and

UDP headers. We then release the remaining 6LoWPAN dispatch from the packet

buffer and also set the payload type to UNDEF so UDP can find it later. The resulting

packet now looks like this: [UNDEF,UDP,IPV6,NETIF].

Again we use netreg_lookup() to find all handlers for IPV6 for the ALL demultiplex-

ing context and use pktbuf_hold() to increment the reference counter for potential

receivers other than the first and send it to the IPv6 header using NETAPI_RCV.

Once more we assure in the IPv6 handler that we can write safely using

pktbuf_start_write(), but in terms of packet parsing, the IPv6 handler does

not have to do much, since 6LoWPAN already provided the packet snips that IPv6

would normally mark. If 6LoWPAN wasn’t present (e.g. for an Ethernet interface),

the IPv6 handler would have to mark the IPv6 header itself using pktbuf_mark()

here. It then uses the next header field in the IPv6 header to identify the next

28



3 The GNRC Network Stack M. Lenders

handler, which is of course UDP, looks it up for the ALL context in the netreg

accordingly, and sends it using NETAPI_RCV. Because we have a 6LoWPAN use-case,

the packet make-up does not change in IPv6 in this use-case and is still [UNDEF,UDP,

IPV6,NETIF]. Without 6LoWPAN the type of the payload would be changed to the

type of the payload – UDP – and the packet would look like this: [UDP,IPV6,NETIF].

The UDP handler also uses pktbuf_start_write() to potentially receive a write-

safe copy of the packet. As with IPv6, the 6LoWPAN handler already created a

UDP snip for the header, so no further parsing is needed. But again, for the non-

6LoWPAN case, this would have happened here. As such the packet looks still

the same: [UNDEF,UDP,IPV6,NETIF]; without 6LoWPAN, we would finally reach the

same make-up, too.

Finally, we look up the PIDs for the applications interested in packets with the des-

tination port of the UDP packets using netreg_lookup() with the UDP type and the

destination port as demultiplexing context, hold the packet if needed for those han-

dlers (again only if the number is greater than 1) and hand it over using NETAPI_RCV.

3.4.2 Transmission of a UDP Over 6LoWPAN Packet

UDP packets are transmitted with GNRC using NETAPI_SND from an application or

library (like GNRC ’s conn implementation e.g.). UDP expects both an IPV6 (or any

network layer protocol header) and UDP packet snip present in addition to the packet

snip representing the payload. So right from the start, the packet has the make-up

[IPV6,UDP,UNDEF]. Note that the order isn’t reversed like in the transmission case,

as described in subsection 3.3.2. Additionally UDP expects at least the destination

port field of the UDP header set, as was also described in subsection 3.3.2. As with

reception, we first make sure we are the only ones having write access to the packet

using pktbuf_start_write() (see Figure 3.5). For simplicity, we assume the packet

was not sent somewhere else and that the packet’s reference counter is 1, so the

packet isn’t duplicated and just returned.

UDP then sets the unset field in the UDP header – typically source port and

length – however, the check-sum will be calculated later, since we don’t know all

IPv6 addresses yet, needed for the pseudo-header [19]. Next, it identifies that the

network header is of type IPV6 and searches for its handler in the netreg using the ALL

demultiplexing context, finds the IPv6 thread (again – here and below – for brevity

we only show the scalar ipv6_pid in Figure 3.5, so no pktbuf_hold() is necessary),

an send it to that thread using NETAPI_SND with the packet as data.

The IPv6 thread again uses pktbuf_start_write() to get write-access to the

packet and sets the remaining IPv6 header fields, using e.g. internal functions to

determine the source address from the destination address, if it isn’t set already.

This is also the point were the check-sum of upper layers – UDP in this case – is

calculated, using a callback back to the module of the upper layer. After that, it uses

next-hop determination to determine the interface the packet is supposed to be sent
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over and uses address resolution to determine the destination L2 address. The IPv6

thread writes both of these informations into a netif header (see subsection 3.3.5)

that it creates using pktbuf_add(), and prepends it to the packet. The make-up of

the packet is now [NETIF,IPV6,UDP,UNDEF].

Since the interface we are sending over is a 6LoWPAN interface (the IPv6 thread

identifies this through a flag associated to the interface) the IPv6 thread looks up

the 6LoWPAN handler using netreg_lookup() with the ALL context and sends the

packet to it using NETAPI_SND. For a non-6LoWPAN interface, the packet would just

have sent the packet directly to the interface using NETAPI_SND to the PID identifying

the interface and the procedures below concerning 6LoWPAN are skipped.

6LoWPAN needs to identify the maximum length of frames the L2 can send. It

uses NETAPI_GET with parameter MAX_PKT_LEN to get this from the interface. It knows

over which interface to send the packet, thanks to the packet’s netif header which

contains this information. The interface’s MAC thread in turn uses netdev::driver

::get() with the same parameter to get the value from the device driver.

Afterwards, the 6LoWPAN thread gains write access to the packet using

pktbuf_start_write(). It allocates a packet snip with enough space to write

6LoWPAN compression data into it using pktbuf_add() and prepends it to the

payload. It then compresses the IPv6 and UDP header and writes the compression

data into the newly allocated snip. During this process, the actual length of the

compression data can be determined and the handler is thus able to resize the packet

using pktbuf_realloc_data(). Since they are no longer needed, the IPv6 header

and UDP header are released.

Using the interface identifier in the netif header, the 6LoWPAN thread then

sends the packet to the interface’s thread using NETAPI_SND.

The interface uses pktbuf ’s function pktbuf_get_iovec() to convert the list of

packet snips into an array of POSIX struct iovec that is then used to send the

data over the network device using netdev::driver::send().

3.5 Protocol Support

As one of the requirements for the development of GNRC was to focus on IPv6 first,

the protocols outlined by the IoT stack (see section 1.4) are fully supported. This

means GNRC IPv6, 6LoWPAN, UDP, and RPL. However, I decided to omit some

sub-features normally found in well-known operating systems and network stacks for

now, to be added later. Among them are the duplicate address detection as outlined

by RFC 4862 [85] as well as the multi-hop duplicate address detection outlined in

RFC 6775 [76] and the HC1 header compression from RFC 4944 [64], as it was made

obsolete in RFC 6282 [41]. As was required, all features provided are optional.

Though UDP is already implemented and well-tested, TCP support is currently

still in development [13]. There are no plans for IPv4 support as of yet.
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Through both its conn layer and the POSIX sockets provided by RIOT, GNRC

can support CoAP through any CoAP library and RIOT already provides support

for both libcoap [6] and microcoap [79] through its third-party package system (see

section 2.5).

3.6 Summary

This chapter described the GNRC network stack – the centerpiece of this thesis. I

drafted out the short history of this stack and made our design objective clear –

including GNRC ’s requirements, both functional and non-functional:

• The functional requirements were

– focus on IPv6,

– full-featured in protocol support,

– support for multiple interfaces, and

– parallel data handling.

• The non-functional requirements were

– use of open standards and tools,

– easy configurability,

– modularity,

– low memory footprint, and

– low-power design.

I then described the overall architecture of GNRC and went into detail for all of

its three main components, which are

• the central packet buffer pktbuf,

• the network module registry netreg, and

• the inter-module communication API netapi,

In contrast to prior work, the intermodular (and thus in turn inter-layer and

inter-protocol) communication between the components of the GNRC stack is based

on multi-threading IPC, rather than function- or event-queue-based approaches:

Each protocol is running in its own thread and uses the IPC-based API netapi to

communicate with others. Easy prioritization of protocols is possible this way by

simply using the priorities of the threads.

To show the interaction between the parts of GNRC, I drew out the two use-

cases of receiving and sending a UDP packet over 6LoWPAN, but also made the

differences clear when no 6LoWPAN is used in the sub-use-cases where this was

important.
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Finally, I made clear where GNRC is currently at regarding protocol support, as

it currently only supports UDP over IPv6 (+ 6LoWPAN), with application layer

protocol support being able to be imported using conn.
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Figure 3.4: Example use-case for GNRC: Reception of a UDP packet over
6LoWPAN. Gray boxes show that the module is running in its own
thread.
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4.1 Introduction

To get an idea of the performance of GNRC, I decided to compare the stack to two

well-established solutions. However, many network stacks are tightly integrated into

their operating system’s environment, which makes it hard to compare them just on

the basis of their own performance.

Two stacks that are independent of any operating systems proved to be of partic-

ular interest. lwIP [20] – which is often used in combination with FreeRTOS [5]

– is very easy to port thanks to its OS abstraction and Hardware Abstraction

Layer (HAL). emb6 – a fork of lwIP ’s sister stack uIP – on the other hand was

developed to run stand-alone on many boards that RIOT already supports. As such,

it was very easy to plug into emb6 ’s HAL.

Both stacks were ported to RIOT utilizing its third-party package management

system (see section 2.5).

The following sections broadly describe the inner workings of the two stacks.

Specifically, section 4.2 is dedicated to lwIP, while section 4.3 goes into emb6.

4.2 lwIP

The lwIP (lightweight IP) network stack was originally developed in 2001 by

A. Dunkels at the Swedish Institute of Computer Science (SICS) [20]. Develop-

ment today is continued by a worldwide community under a modified 3-clause BSD

license [31].

Modularity Like GNRC, lwIP was developed to be highly modular. This modu-

larity is achieved by setting LWIP_<MODULENAME> macros to a non-zero value. The

default values for this can be found in src/include/lwip/opt.h and can be modi-

fied in an external lwipopts.h. The C pre-processor then includes or leaves out the

relevant functionality according to the setting of these macros.

Stack-internal Communication To hand a packet from layer to layer, lwIP uses a

centralized IPC message queue that the tcpip thread reads (see Figure 4.1). Mes-

sages can be identified by a type and contain the callback needed for the protocol

type that is then called by the tcpip thread.
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Figure 4.1: lwIP architecture overview
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Figure 4.2: lwip packet buffer concept in PBUF_POOL mode [20, section 6.1]

Packet Buffering For packet buffering, lwIP uses a central packet buffer pbuf that

allocates fixed-sized chunks in memory. The size of each chunk in PBUF_POOL mode

(which is the default and which I will use for my experiments) can be modified

with the PBUF_POOL_BUFSIZE macro, which is set to a predefined value that can

accommodate a TCP segment of minimum segment size plus IPv6 and link layer

headers. If a packet exceeds the size of a chunk, it concatenates it with additional

chunks as needed (see Figure 4.2). The chunks and list structure for the packet

buffer can be either allocated dynamically in the memory heap or in static memory

in a memory pool. For the latter, the pool size can be set with the MEM_SIZE macro.

Network Interfaces lwIP supports multiple interfaces. These are implemented in

an object-oriented manner as a list of structures, containing option values and an

input() method to receive a packet allocated and marked for further handling in

the packet buffer and up to three output methods:

• output() to send IPv4 packets over the interface,

• output_ip6() to send IPv6 packets over the interface, and

• linkoutput() for both output() and output_ip6(), but also for modules like

the Address Resolution Protocol (ARP) implementation of lwIP to hand an

already assembled L2 frame to the actual network device.
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Protocol Support lwIP was originally developed with focus to have a full TCP im-

plementation on embedded devices, but it also provided UDP functionality. Though

it only supported IPv4 [20] in the beginning, IPv6 was later added as well. As

of February 22nd, 2016, a 6LoWPAN layer is also provided as a netif adaptation

layer [94] (by setting input() and output_ip6() of an interface to the according

6LoWPAN functions). There is however no full deployment of 6Lo-ND according

to RFC 6775 [76], nor is there an implementation for RPL or even static routing

yet. Other protocols supported are IPv4, ARP, Point-to-Point Protocol (PPP) and

application layer protocols such as for instance the Domain Name System (DNS).

As lwIP is modular, most of the supported features are of course optional.

Since lwIP has full socket support, any CoAP library based on sockets or able to

utilize sockets can be used to bring CoAP to lwIP.

4.3 emb6

emb6 was forked early in 2015 from Dunkel’s second network stack and the primary

network stack of the Contiki operating system – uIP (“micro IP”) [21] – in an effort

by the working group of A. Sikora et al. at Hochschule Offenburg to provide a uIP

version without the need for Contiki’s proto-threads [39]. This was achieved pri-

marily by replacing the message queues of Contiki with similarly structured polling

queues and refactoring some of Contiki’s functionalities and data structures into

emb6’s utils sub-module.

As with Contiki and uIP, emb6 was released under the 3-clause BSD license.

Modularity Since it is based on uIP, it is similarly monolithic as uIP. There are a

few features that can be deactivated in order to reduce code size and the code itself

is highly structured, but the borders between functionalities are not as clear-cut as

in lwIP and GNRC. For instance, most of the network stack’s internal functionality

is implemented in the emb6/src/net/ipv6 directory, including UDP and TCP.

Stack-internal Communication emb6 is designed to run in a single thread and

is even able to just be called in a periodic manner so other tasks can be handled

in-between. Normally, however, it polls the event queue on a fixed time interval and

acts upon an event if it finds one. As such, it is not only purely function-based, but

also – since it mostly operates on global variables and buffers – lacks parameters for

those functions for the most part.

Packet Buffering Buffering in emb6 (and uIP) is primarily done by the global

uip_buf array. It fits exactly one IPv6 packet (or less if need be) and is used

for both sending and reception of IP traffic. Its size can be configured with the

UIP_CONF_BUFFER_SIZE macro. Packets of higher layers are assembled in-place in this
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buffer. 6LoWPAN (or sicslowpan as it is called here due to its SICS legacy) uses its

own buffer for packet compression, fragmentation and reassembly. For emb6 their

size is determined by the QUEUEBUF_CONF_NUM and QUEUEBUF_CONF_REF_NUM macros.

Network Interfaces emb6 only has support for one network interface, though a

SLIP interface can be added to allow for IPv6 communication via the device’s UART

interface.

Protocol Support Since it only uses a single buffer and does not implement sliding

window, emb6 inherits the property of uIP of only being able to handle single-

segmented TCP streams [21]. uIP’s IPv4 support was dropped from emb6, most

likely to save space and maintenance effort. But apart from this, 6LoWPAN, IPv6,

RPL, and UDP are supported, although as with lwIP (see section 4.2) there is no

full support for 6Lo-ND.

Due to its uIP/Contiki legacy, emb6 also has native CoAP support through the

Erbium [47] library.

4.4 Summary

In this chapter we looked into the two other stacks we used for the evaluation of

GNRC: lwIP and emb6.

On the one hand we have lwIP which is very modular and versatile, and on the

other we have emb6 which inherits (and even exacerbates) the monolithic nature of

uIP.

Both stacks are capable of running without a given operating system and are thus

perfect to be put into context with GNRC in the common environment of the RIOT

operating system.
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5 Comparative Evaluation of GNRC, lwIP

and emb6

5.1 Introduction

In chapter 3 I described the GNRC network stack that I developed for this thesis and

presented two further stacks for comparison in chapter 4. In this chapter I intend

to compare those three both qualitatively (see section 5.2) and quantitatively via

experimentation (see section 5.3). I decided to mainly focus on stack traversal times

(see subsection 5.3.2) and memory consumption (see subsection 5.3.3), since they

provided me with the most meaning given the tools I had at my disposal. With the

results of both comparisons, I will then discuss the pros and cons of my new network

stack in section 5.4.

5.2 Qualitative Comparison

An overview over the supported features of each stack we are about to compare

can be seen in Table 5.2. Due to lwIP being the oldest and not stripped down

for a certain use-case as emb6 is, it has the richest feature set. It basically has

full IPv6 and TCP support. Features not listed are its IPv4 (including ARP),

PPP, and application layer protocols such as for instance DNS (see section 4.2),

which allow lwIP to also be used in more classical applications outside the IoT

use-case. As described in section 4.2, 6LoWPAN support in lwIP is comparably

young [94]. For this reason, some features such as fragment re-sequencing, old-style
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Figure 5.1: The FIT IoT-LAB Open Node M3 [29]

header compression, and optimization for neighbor discovery aren’t available yet.

Likewise, RPL is not implemented for the stack yet. The two more IoT-focused

stacks emb6 and GNRC, on the other hand, support a large subset of the features

of 6LoWPAN; emb6 even has partial TCP support (see section 4.3). However, due

to its limitations, emb6 is only able to receive one 6LoWPAN fragment at a time

and doesn’t optimize for neighbor discovery yet. GNRC, on the other hand, doesn’t

have any TCP support yet (see section 3.5). However, capability for some features

that aren’t established yet are already provided, namely ICMPv6 error reporting

and RPL non-storing mode; for both features, the foundations are given, but they

are not yet used. For ICMPv6 error reporting, the actual sending of the messages

is still missing, while the reporting API already exists; for RPL non-storing mode,

support for source routes is given both by the IPv6 extension header support and

the forwarding tables capabilities of RIOT.

Code quality-wise, I of course found myself most comfortable around GNRC since

I wrote most of its code and documentation. For the other two stacks, I was for the

most part of the impression that the documentation only served as an explanation

for the implementation. As such, a lot of code inspection was required to actually

find out what each component was doing. But as I can’t exactly say how the

experience of a new user to GNRC would be (I heard both praise and criticism from

the community), I can’t know if this is the case for GNRC as well. All-in-all I view

this aspect as very subjective and would therefore prefer to refrain from any further

actual comparison.

5.3 Comparison via Experimentation

5.3.1 Experimentation Platform

All of my experiments were run on the M3 platform of the FIT IoT-LAB testbed [30].

It is equipped with an ARM Cortex M3 processor (ST2M32F103REY, 72 MHz,
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64 KiB RAM) and 2.4 GHz 802.15.4 radio (AT86RF231) and a number of sensors

(see Figure 5.1) [29]. The testbed is openly available and only requires registration

to the FIT IoT-LAB infrastructure.

I only require one of these nodes for the experiments presented in this section, so

in order to obtain consistency in the output of the experiments I chose a fixed node

at the Paris site of the testbed: m3-43.

To get the same type of behavior concerning context changes and timings, I ported

all stacks to the RIOT operating system – except for GNRC, which is already native

to RIOT. Apart from providing a system access layer for both emb6 and lwIP, it was

also necessary to wrap their network interface layer around netdev (see section 2.3).

Since I used UDP for all my experiments, I implemented the conn_udp sub-module

of the conn API (see section 2.4) of for each stack.

I used commit 20ba062 [55] in the RIOT repository for all my experiments. At

the time of experimentation, this was the current HEAD of the 2016.04 release branch.

The experiments were based on 9d4cbb2 of my application repository [53].

I used version 4.9.3 20150529 of the GCC ARM Embedded [90] toolchain on

Ubuntu 16.04 to build all my experiments.

Unless otherwise stated, I used the default configuration provided by RIOT.

5.3.2 Setup For Traversal Time Tests

To get a benchmark for the stacks, I split the experimentation into transmission of

packets and their reception. To have a fair and equal baseline for the comparison

I only included protocols that every stack supports; as such, I chose UDP as the

transport layer protocol, IPv6 for the network layer with 6LoWPAN with fragmen-

tation, IPHC and NHC, and used no special MAC on the IEEE 802.15.4-based L2.

To access UDP, I used the conn_udp API provided in the RIOT ports. Instead of

using a physical device, I developed a virtual netdev_test device driver that allows

us to switch out its method functions to e.g. stop or start a timer.

There are a few constants that are used for both experiment setups. The four

most significant are EXP_MIN_PAYLOAD, EXP_MAX_PAYLOAD, EXP_PAYLOAD_STEP, and

EXP_RUNS.

EXP_MIN_PAYLOAD is the minimum payload length we want to send. It was set

to 8, because for emb6 and lwIP, 0 wasn’t a possible payload length and I wanted

to choose a value divisible by 8, since 6LoWPAN only fragments in intervals of

length divisible by 8 [64, section 5.3]. Additionally, this gives me the change in the

transmission experiments to add a payload of at least size 5 to help us identify a

packet in a simple manner for timing of UDP transmission stack traversal times.

EXP_MAX_PAYLOAD is the maximum payload length we want to send. It was set to

1232, because 1280 bytes is the MTU for 6LoWPAN [64, section 4]: Since this also

includes the IPv6 header itself (40 bytes) and the UDP header (8 bytes), we subtract

their length from 1280 bytes and obtain 1232 bytes as the result.
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EXP_PAYLOAD_STEP is the number of bytes by which we want to increment the

payload length after one payload length was finished testing. For our purposes we

set this value to 8, again to have the payload always be divisible by 8.

EXP_RUNS is the number of times we send packets of a certain payload length

through the stack to later calculate the mean and standard deviation of all runs for

the payload.

Stack Configuration

I also optimized the packet buffer sizes of the stacks to allow for exactly one 1232

bytes payload to be handleable by the respective stack in both the transmission and

the reception direction. I did this to both allow for the fairest comparison for size,

as described in subsection 5.3.3, and to limit parallel data handling capabilities as

much as possible (creating stack-internal congestion artificially). The values were

determined by both approximating a range of values by careful analysis and then

finding the exact value through trial-and-error.

All stacks were configured as IPv6 routers with full 6LoWPAN support (as far as

the stack could provide it) and to only be able to handle UDP.

GNRC only needed its packet buffer resized to GNRC_PKTBUF_SIZE = 1676, to fit

one IPv6 datagram + one fragment + meta-data.

lwIP required the following configuration macros to be set:

• PBUF_POOL_BUFSIZE = 200, to fit one fragment + meta-data into one packet

buffer chunk. lwIP allocates a chunk per fragment on reassembly.

• MEM_SIZE = THREAD_STACKSIZE_DEFAULT1 + 3624, to fit the memory stack of

the tcpip thread, a full IPv6 packet, 6LoWPAN reassembly structures and

additional data allocated by the network stack.

Furthermore, I deactivated Multicast Listener Discovery (MLD) and IPv6 frag-

mentation and reassembly, since the other two stacks don’t support these fea-

tures, and set the temporary buffer of my netdev layer implementation for lwIP

LWIP_NETDEV2_BUFLEN to 127 (the length of an IEEE 802.15.4 frame).

emb6 requires the following macros to be set:

• UIP_CONF_BUFFER_SIZE = 1332 to fit a full IPv6 datagram + additional data

• QUEUEBUF_CONF_NUM = 16 and QUEUEBUF_CONF_REF_NUM = 16 to allow for re-

assembly of 1240 bytes sized IPv6 datagrams.

1Provided by RIOT’s thread.h.
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The polling delay for the emb6 thread was determined experimentally to be 58 µs.

This way, the stack traversal times will be as short as possible while still being mostly

stable for payload lengths.

UDP Transmission

The essential parts of the experimentation code can be found in Listing 5.1.

After we setup the virtual device to provide the stack with the option values it

requires and initialized the stack, we add the _netdev_send() callback to the device

so that we are able to stop the traversal time (l. 8).

For emb6 and GNRC I tested both with and without RPL. lwIP is exempt from

these, since it neither provides a RPL implementation, nor does it allow for setting

of static routes, as already noted in section 4.2. For experiments without RPL, I

used a link-local (fe80::/64 prefixed [38]) address as destination address dst. With

RPL, I used a abcd::/64 prefixed global unicast address as dst and set up the node

as a RPL root with an address of the same prefix as the DODAG ID.

After further experiment-related setup of the network stack, we start sending our

UDP packets and steadily increment the overall payload length by EXP_PAYLOAD_STEP

from EXP_MIN_PAYLOAD until we reach EXP_MAX_PAYLOAD (ll. 11-30).

We use the last 8 bit of the experiment run counter as ID for the timer and fill

the payload with that value, but leave 4 bytes (encoded in TAIL_LEN) empty (l. 16).

Afterwards, we append both the current payload length (l. 19) and an identifying

sequence I dubbed “honey guide” for the purpose of these experiments (l. 21) to

the payload to get to the full payload length. The honey guide is a constant 2 byte

sequence that was generated randomly at compile time and is used to discern the

packets sent by this experiment from other packets sent by the stack in a simple

manner.

We then start our timer, store the time in a global array (l. 24), and send the

packet through the stack (l. 26).

On the netdev side of the stack we immediately stop the timer (l. 37) and try to

identify the packet. Note that the IPv6 datagram might have been fragmented by

6LoWPAN, so only the last fragment will carry the honey guide. This is why we also

appended the payload length in l. 19, since the size of the fragment might of course

be smaller than that. Fragments that aren’t the last or other packets that the stack

sends out periodically or on initialization are therefore filtered out by identifying

those that do not carry the honey guide sequence. After identifying the packet we

acquire the start time of our timer from the global times array (l. 54) and print out

the pair of payload length and traversal time (l. 56) for data collection.
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Listing 5.1: UDP transmission experiment code

1 /* includes and global variable defintions ... */
2 static int _netdev_send(netdev_t *dev, const struct iovec *vector,
3 int count);
4

5 void exp_run(void)
6 {
7 /* register send callback to ‘netdev_test‘ device */
8 netdev_test_set_send_cb(&netdevs[0], _netdev_send);
9 /* setup ‘dst‘ and configure stack to be able to send to ‘dst‘ (add

10 * ‘dst‘ to neighbor cache + set default route if ‘dst‘ is global) */
11 for (payload_size = EXP_MIN_PAYLOAD;
12 payload_size <= EXP_MAX_PAYLOAD;
13 payload_size += EXP_PAYLOAD_STEP) {
14 for (unsigned id = 0; id < EXP_RUNS; id++) {
15 /* fill payload with ID for timer stop */
16 memset(buffer, id & 0xff, (payload_size - TAIL_LEN));
17 /* append experiment marker sequence
18 * (length + random, but fixed 16 bit) */
19 memcpy((uint16_t *)&buffer[payload_size - TAIL_LEN],
20 &payload_size, sizeof(uint16_t));
21 memcpy(&buffer[payload_size - HONEYGUIDE_LEN],
22 honeyguide, sizeof(honeyguide));
23 /* start traversal timer */
24 timer_window[id % TIMER_WINDOW_SIZE] = xtimer_now();
25 /* send UDP packet to ‘dst‘ */
26 conn_udp_sendto(buffer, payload_size, &unspec,
27 sizeof(unspec), &dst, sizeof(dst), AF_INET6,
28 EXP_SRC_PORT, EXP_DST_PORT);
29 }
30 }
31 }
32

33 static int _netdev_send(netdev_t *dev, const struct iovec *vector,
34 int count)
35 {
36 /* stop traversal timer */
37 const uint32_t stop = xtimer_now();
38 /* get data from packet vector */
39 const uint8_t *payload = vector[count - 1].iov_base;
40 const size_t payload_len = vector[count - 1].iov_len;
41 int res = 0;
42 uint32_t start;
43 uint16_t exp_payload_len;
44 uint8_t id;
45

46 /* filter out unwanted packets (e.g. by NDP or RPL or non-terminal
47 * 6LoWPAN fragments) by comparing last to bytes with ‘honeyguide‘ */
48

49 /* get payload length of packet and timer ID from packet */
50 memcpy(&exp_payload_len, &payload[payload_len - TAIL_LEN],
51 sizeof(uint16_t));
52 id = payload[payload_len - TAIL_LEN - 1];
53 /* get start of traversal time */
54 start = timer_window[id % TIMER_WINDOW_SIZE];
55 /* output result for current packet */
56 printf("%u,%" PRIu32 "\n", (unsigned)exp_payload_len,
57 (stop - start));
58 return res;
59 }
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UDP Reception

The essential parts of the experimentation code can be found in Listing 5.2.

This time, however, we setup the receive callback of the netdev_test device for

stopping the traversal time (l. 8).

As with the transmission experiments, we test for both emb6 and GNRC with

RPL and without RPL. Though the behavior of the stack isn’t affected this time

because we don’t perform look-ups in the FIB, it might have some influence on

the timings of the stack since it is sending out RPL-related data. Therefore, we

add a abcd::/64 prefixed global unicast address to the interface of the stack we are

using and setup the node as a RPL root with the same address as DODAG ID.

After further experiment-related setup of the network stack we start a thread for

UDP packet reception (l. 14). It will loop over a conn_udp_recvfrom() and stop the

reception times (function at l. 72, in-depth description below).

We then start to prepare and trigger the reception of 6LoWPAN packets that

might be fragmented depending on the payload length and increment the over-

all payload length by EXP_PAYLOAD_STEP from EXP_MIN_PAYLOAD until we reach

EXP_MAX_PAYLOAD (ll. 20-46).

To simplify the start of the traversal timer in the netdev, we also store the current

_id globally (l. 25).

Then, we prepare and count the required fragments for the current payload length

(l. 28). For brevity, I included only a comment in Listing 5.2 at this point, but actu-

ally we only set the payload to id & 0xff here and recalculate the UDP checksum.

Most of the preparation on the headers already happened before the loop over id

even started (marked by the comment in l. 22). Note that even in experiments

with this, fragments will be addressed with link-local addresses (or rather speaking

with full elision of the addresses in 6LoWPAN header compression [41]). RPL is

only included to account for timing differences due to the intermediate sending of

additional RPL traffic.

For every fragment, we then trigger a reception event at the netdev (l. 38) but

wait using a semaphore for the data of the fragment to be copied into the stack’s in

order to not accidentally overwrite the fragments buffer on the next run (l. 42).

The netdev uses the global variable _frag to keep track of which fragment it is

currently at. Thus, after all fragments have been handled, we need to reset that

variable to 0 (l. 44).

The receive callback of the netdev first checks if the buf parameter is a NULL

pointer (l. 51). This is required since it is a legal value in the netdev API to cause

the device to just return the length of the current frame in the buffer (which we do

in l. 69).
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If buf isn’t NULL, we start the stack traversal timer (l. 58) with the help of the

global variable _id which we updated in l. 25 and copy the current fragment into

buf (l. 61).

Afterwards, we signal the main thread waiting at the semaphore sync in

exp_run() (at l. 42) that the data was copied and return the length of the cur-

rent fragment to the caller (l. 66).

During all of the above, the receiver thread created a UDP connection (l. 82) and

started listening for an incoming UDP packet (l. 86). As soon as a packet is received,

the transmission timer is stopped (l. 89) and the first byte of the UDP payload is

used to identify the packet (l. 91). We do not need to filter or make use of any

special “honey guides” here, since we only receive the packets that were generated

above.

Finally, we print out the resulting payload length and traversal time pair (l. 93).

Listing 5.2: UDP reception experiment code

1 /* includes and global variable definitions ... */
2 static int _netdev_recv(netdev_t *dev, char *buf, int len, void *info);
3 static void *_recv_thread(void *arg);
4

5 void exp_run(void)
6 {
7 /* register receive callback to ‘netdev_test‘ device */
8 netdev_test_set_recv_cb(&netdevs[0], _netdev_recv);
9

10 /* setup ‘dst‘ and configure stack to be able to send to ‘dst‘
11 * (add ‘dst‘ to interface if need be) */
12

13 /* start packet reception thread */
14 if (thread_create(thread_stack, sizeof(thread_stack), THREAD_PRIO,
15 THREAD_CREATE_STACKTEST, _recv_thread, NULL,
16 "exp_receiver") < 0) {
17 return;
18 }
19

20 for (payload_size = EXP_MIN_PAYLOAD; payload_size <= EXP_MAX_PAYLOAD;
21 payload_size += EXP_PAYLOAD_STEP) {
22 /* prepare 6LoWPAN headers according to payload_size */
23 for (unsigned id = 0; id < EXP_RUNS; id++) {
24 /* store ID globally */
25 _id = id;
26 unsigned fragments = 0;
27

28 /* prepare and count fragments (or just 1 datagram if
29 * ‘payload_size‘ is small enough) according to
30 * ‘payload_size‘ in ‘frag_buf[i]‘ and fill UDP
31 * payload with (‘id‘ & 0xff);
32 * store the lengths of fragment ‘i‘ in ‘frag_buf_len[i]‘ */
33

34 for (unsigned i = 0; i < fragments; i++) {
35 /* trigger receive event in ‘netdev‘ for fragment i */
36 netdev->event_callback((netdev_t *)netdev,
37 NETDEV2_EVENT_ISR,
38 netdev->isr_arg);
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39 /* wait for ‘netdev‘ to copy data of fragment ‘i‘
40 * into stack to not override in next iteration
41 * before it was copied */
42 sema_wait(&sync);
43 }
44 _frag = 0; /* reset fragment counter for ‘netdev‘ */
45 }
46 }
47 }
48

49 static int _netdev_recv(netdev_t *dev, char *buf, int len, void *info)
50 {
51 if (buf != NULL) {
52 uint8_t frag;
53 /* error handling etc. */
54 /* get current fragment prepared in ‘exp_run()‘ */
55 frag = _frag++;
56 if (frag == 0) {
57 /* start timer on first fragment */
58 timer_window[_id % TIMER_WINDOW_SIZE] = xtimer_now();
59 }
60 /* copy current fragment into stack buffer */
61 memcpy(buf, frag_buf[frag], frag_buf_len[frag]);
62 /* signal main thread (‘exp_run()‘) that fragment was copied
63 * to stack buffer */
64 sema_post(&sync);
65 /* return length of current fragment (not ‘_frag‘ anymore) */
66 return frag_buf_len[frag];
67 }
68 /* return length of current fragment for buffer preparation */
69 return frag_buf_len[_frag];
70 }
71

72 static void *_recv_thread(void *arg)
73 {
74 conn_udp_t conn;
75 ipv6_addr_t addr = IPV6_ADDR_UNSPECIFIED;
76 size_t addr_len;
77 uint16_t port;
78 /* initialize thread’s message queue */
79 msg_init_queue(thread_msg_queue, THREAD_MSG_QUEUE_SIZE);
80 /* create connection object */
81 memset(&conn, 0, sizeof(conn));
82 conn_udp_create(&conn, &addr, sizeof(addr), AF_INET6, EXP_DST_PORT);
83 while (1) {
84 int res;
85 /* wait for incoming packet */
86 if ((res = conn_udp_recvfrom(&conn, recv_buffer, sizeof(

recv_buffer),
87 &addr, &addr_len, &port)) > 0) {
88 /* stop timer */
89 uint32_t stop = xtimer_now();
90 /* take ID for timer from packet */
91 uint8_t id = recv_buffer[0];
92 /* output result for current packet */
93 printf("%d,%" PRIu32 "\n", res,
94 stop - timer_window[id % TIMER_WINDOW_SIZE]);
95 }
96 }
97 return NULL;
98 }
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Figure 5.2: Stack traversal times by payload

5.3.3 Setup For Memory Consumption Measurements

To test the size of static memory, I use the same application for UDP recep-

tion timing presented in section 5.3.2, but I added the remaining functions of the

udp_conn (gnrc_conn_close(), gnrc_conn_sendto(), and gnrc_conn_getlocaladdr

()) at reachable points of the code to not have them and the functionality behind

them optimized out by the compiler when it optimizes for size.

To check the stack usage I modified both applications from subsection 5.3.2

to print the sum of both stack usage and stack size for each thread instead

of the timings. The stack usage can be acquired with RIOT’s API function

thread_measure_stack_free() when the DEVELHELP macro is set and the thread

in question has the THREAD_CREATE_STACKTEST2 flag set. I excluded the idle, main

and exp_receiver (created in Listing 5.2, l. 14) thread from those sums. The

maximum of all of these runs of all experiments for each of the remaining memory

stack shall be my result.

5.3.4 Discussion of the Results

Stack Traversal Time

The results for the stack traversal times can be seen in Figure 5.2. The lines represent

the means of all EXP_RUNS for one payload length, while the error bars represent the

standard deviation of these.

The significant steps in the graphs are results of the 6LoWPAN fragmentation. In

the tests without RPL, I used IPv6 link-local addresses based on the IEEE 802.15.4

long address, so the addresses are fully compressed. For the tests with RPL, I used

the abcd::/64 prefix (without any context given), which means that the prefix is

carried inline and the packets are 8 bytes longer. As a result, the fragmentation

2This flag is usually set for the stacks of most threads on their creation.
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for transmission for the tests without RPL starts at 96 bytes payload length, while

the fragmentation with RPL starts at 88 bytes payload length, since the headers

need 8 bytes more space. For both cases, it then continues to add further fragments

for every 96 bytes of payload length. For reception, I did not use the prefix in

6LoWPAN’s compression header, so the transition of payload lengths generating

new fragments is the same for both tests with RPL and without.

For lwIP, the fragmentation also starts at 88 bytes due to a known bug [54] in the

version of lwIP used that considers the already compressed IPv6 datagram for its

datagram length and offset fields instead of the uncompressed datagram [41, section

2]. Due to the 8 byte unit system used for the offset field, this gives the payload less

space in the first fragment resulting in the 88 byte fragment. The 6LoWPAN frame

preparations in the reception tests needed adoptions to mitigate this issue.

Though lwIP’s transmission stack traversal time seems quite linear in the graphs,

it also shows the steps in the data, though not very steeply. While the other stacks

gain ≈ 100 µs for each fragment they must send, lwIP only gains ≈ 20 µs. GNRC

has this disadvantage since its 6LoWPAN thread yields between each fragment to

prefer received frames, while emb6’s disadvantage is most likely due to the slower

packet queue used for fragmentation. A more thorough code analysis is needed to

explain the huge time differences regarding fragmentation between emb6 and lwIP

while using similar techniques to send a datagram.

emb6’s irregularities in the steps and bigger deviation from the mean can be

explained by its sleep-cycle-based event polling. If an event was added to the event

queue while the emb6 thread was sleeping, the event can be handled immediately,

while an empty queue results in another 58 µs (see section 5.3.2) for the stack to

wait.

Though both lwIP and GNRC use thread-based communication for passing mes-

sages, lwIP is slightly faster (especially – as mentioned – in the transmission). lwIP

uses an mbox-based IPC messaging that is – at the current state of RIOT – much

slower than the thread-targeted IPC messaging used by GNRC3. Apart from the

initial conn to tcpip thread, however, this mechanism isn’t used for transmission,

which again explains the much slower growth in transition time. GNRC on the other

hand uses multiple IPC calls between its layers and is still faster than the event and

sleep-cycle-based emb6. This only proves the point I made in subsection 3.3.1, that

GNRC is not at a disadvantage – at least on RIOT – despite its excessive IPC-usage.

With a proper mbox IPC – as it was recently added to RIOT [73] – lwIP might even

be faster.

While this fast message handling in transition is impressive, it is important to

note that this is achieved by effectively blocking the tcpip thread with the sending

task. In an application setting with short requests and long replies – as is usually

3This is because the centralized ‘mbox‘-based IPC implementation used in these experiments
actually uses the thread-targeted IPC messaging in the background.
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the case with CoAP for instance – this might lead to incoming requests getting lost

since the mbox is filled, because 6LoWPAN is still sending. As mentioned above,

GNRC on the other hand lets the 6LoWPAN thread yield between every fragment,

giving the usually higher prioritized network interface thread the opportunity to

handle a potentially received packet. The 6LoWPAN thread then either continues

to send out fragments or handles received packets depending on which command is

at the head of the IPC queue. Send responses can’t get lost this way either, since

they only are solicited when a received packet is handled by the thread responsible

for them.

RPL of course slows down both emb6 and GNRC minimally, since both stacks

need to send out RPL packets in-between the data packets.

Memory Consumption

For the analysis of the build size, I used the cosy tool by H. Petersen [68]. Apart

from graphically splitting up the memory usage of each compile unit, it is able
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to print out the build tree, allowing for a precise attribution of each byte to the

corresponding part of the code down to the function level. With a parsing script I

was able to assign each part of the flash image to the part of the stack it provides the

functionality for. The results of this can be seen in Figure 5.3. “Auxiliary” denotes

everything not related to a certain layer, like packet buffers, memory management,

OS wrapper functions, or event handling.

For memory stack usage (see Figure 5.4) I used the modified applications I de-

scribed in subsection 5.3.3 and printed out the stack usage instead of timings (which

can be obtained with the DEVELHELP compile flag activated).

As mentioned in section 5.3.2, I configured the stacks to transmit and receive

exactly one 6LoWPAN-MTU-sized IPv6 datagram with UDP payload. As such,

with its separate buffers for 6LoWPAN and uip_buf, for the rest of the stack it uses

the most RAM, while in its default configuration it will most likely be the smallest.

The fact that RAM-wise GNRC is bigger than lwIP is not surprising. Since it

uses a full default-sized memory stack for each of its layers in addition to its packet

buffer, there is a lot more memory needed, but as the analysis of the stack usage in

Figure 5.4 shows: the memory stacks for both GNRC and lwIP can be reduced to

at least ≈ 60% (some even more than 50%) of their size. However, this means that

GNRC uses about 2–2.5 KiB (or 2.5-3 KiB with RPL) less, while lwIP only would

take about 1.5 KiB less. emb6 on the other hand only uses one thread and also

needs about 60% of its memory stack. As follows, we can only reduce the stack size

by about 0.4 KiB (≈ 400 bytes). Yet it is important to note that this is only true

for this particular scenario of the test. A more realistic usage might require more

memory stack size for any of the network stacks.

In ROM usage, both emb6 (through uIP) and lwIP show the maturity of their code

base. However, GNRC is only about 3-4 KiB bigger than emb6 and about 4-5 KiB

bigger than lwIP, which is a code size that could be reduced in the future by thorough

optimization. GNRC’s code is considerably younger than the implementation of the

other two (≈15 years of lwIP/uIP vs. ≈1 year of GNRC) and still has much room for

optimization. Especially its IPv6 and 6LoWPAN implementation could most likely

be decreased to a size of lwIP’s counterparts, since they are the biggest parts of any

stack, but as in lwIP, these two layers are very isolated from their surroundings in

GNRC. This means that these optimizations could be carried out internally since

their current code size seems not to be bound to the overall architecture of GNRC.

The memory size requirements set in subsection 3.2.1 of ≤ 10 KiB RAM and ≤ 30

KiB ROM I managed to keep for GNRC regardless.

5.3.5 Overall Discussion

Overall, lwIP seems to be the most suitable stack under the parameters and condi-

tions I tested, with GNRC being a close second.
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lwIP has the most mature feature set at the network layer level, though its

6LoWPAN port is quite young and it is still missing a working RPL implemen-

tation.

It is the smallest stack, both RAM- and ROM-wise, although both GNRC and

emb6 can be configured to reach the same RAM sizes with only small drawbacks

such as constraints on the size of handleable packets in emb6’s case or by careful

analysis of the overall usage of memory stack and packet buffer in GNRC’s case.

Especially lwIP’s fast stack traversal time for packet transmission needs to be

pointed out, though it acquires this by effectively blocking the reception of packets

that might be received during 6LoWPAN fragmentation.

Both GNRC and lwIP have a very predictable and smooth stack traversal time,

while emb6’s sleep-cycle-based polling of the event queue does not guarantee the

same timings for packets of the same length which also might be bad for the real-

time context of RIOT. In comparison, Contiki’s uIP, which emb6 is based on, might

not have this problem and might actually have a speed comparable to GNRC, since

it uses Contiki’s proto-threads for the event management, allowing the stack to only

become active if and when an event was triggered (i.e. a packet was sent or received).

5.4 The State of GNRC

From this evaluation and both my own as well as my colleagues’ experience working

with the stack, I managed to isolate a few advantages and disadvantages of GNRC

both compared to the stacks used in this comparison and in general.

Advantages

• The well-defined interface enforces clear communication between single net-

work stack modules and encourages deployment of new protocol implementa-

tions.

• Also resulting from the clean interface, sending of user-generated data (or

data generated in the application layer) is very easy to trace and their path

throughout the stack is comprehensible and simple to describe as a use-case

(as show-cased in section 3.4).

• The usage of IPC for the API allows per design parallel data handling of

multiple network messages.

• The loose coupling between networking modules given by the IPC interface

allows for both

– straight forward and simple composition of network stack modules, and

– re-composition and re-compilation of such configuration even during run-

time – hot-plug style. This allows for very simple update capabilies where

only parts of the stack can be taken down and restarted later.
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• Due to its variable-size paradigm, the packet buffer is simple to configure:

There is just one degree of freedom – its overall size. It can thus be shrunken

down very easily to the most constrained memory-size feasible for the use-case

(e.g. only allow for handling of one 6LoWPAN fragment at a time). For packet

buffers using fixed-size chunks, as for example the one used in my experiments

for lwIP, multiple parameters need to be finely tuned to achieve something like

this, while the choice of values isn’t always that transparent.

Disadvantages

• IPC is hard to debug. While most of the user-generated traffic is straight for-

ward and easy to describe stack-internally, it becomes harder when automated

messages and especially timed messages come into play (as they are for in-

stance generated by stack-internal control mechanisms like neighbor discovery

or routing). Due to the way RIOT’s IPC works, a packets call history basi-

cally gets lost at each module border. For those cases an organized method of

sending IPC messages needs to be found.

• Due to the multi-threaded nature of the stack each module needs its own

memory stack. Since at development time it is hard to estimate the actual

usage of the stack, lots of allocated memory actually stays unused for the

most part.

• While in theory a network stack is cleanly layered, this strict view is rather

academic. In practice, neighboring layers sometimes need knowledge of their

neighboring protocols and even protocols further up or down the stack. UDP

for example needs knowledge of the network protocol and which addresses

it will use to calculate its check sum and IPv6 has to have at least an idea

what L2 a packet is sent over. When it comes to routing, which is usually set

above the network layer, link-layer information is sometimes needed for routing

metrics. In a stack where each layer runs in its own thread (or multiple) ways

to communicate this information needs to be found.

5.5 Summary

This chapter evaluates GNRC both in comparison with two other stacks – lwIP and

emb6 – and on its own terms. For comparison, I used the feature-rich and mature

lwIP stack and emb6, which is more of a stripped-down stack for special use-cases

as a base line. Traversal times in transmission and reception and their memory

consumption were the factors that were compared qualitatively. The mature lwIP

stack proved to be the best of the three, with my GNRC stack being a close second.

Future optimization work will go into mitigating this advantage of lwIP.

In general, it was shown that GNRC’s heavy reliance on its IPC-based API can

be seen as both a blessing and a curse: It gives the stack a very clean and structured
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architecture that provides many of the requirements just by being built upon IPC,

but also causes problems in the development process.

All in all, GNRC is able to hold up compared to the established solutions, both

performance-wise and in keeping the constraints it faces.
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6.1 Conclusion

This thesis documented the design and development of the GNRC network stack

for the RIOT operating system. I described the domain of the IETF IoT protocol

suite the network stack is supposed to work with and the RIOT operating system

and its relevant components it was implemented for. Afterwards, I described the

GNRC network stack and its three main components – netapi, netreg, and pktbuf –

in detail. For the sake of comparison, I also described the lwIP and emb6 network

stacks briefly. For the evaluation, I not only compared the three stacks based on

their feature set, but also on the basis of experimentation with UDP over 6LoWPAN

traffic. Here, I assessed both network stack traversal times and memory consumption

of the stacks. lwIP was proven to be the best of the three stacks, with GNRC being

a close second. I also determined general advantages and disadvantages of GNRC.

Although lwIP proved to be the better stack with regards to my experiments, I

still argue that GNRC is the better solution for RIOT specifically. Disregarding

arguments like optimization efforts to be done, GNRC was after all developed with

real-time in mind. Both the property of lwIP’s 6LoWPAN implementation of poten-

tially blocking reception when sending out larger data frames and the heavy reliance

on malloc()-like memory allocation make it less suitable for real-time applications.

Likewise, all stacks can be stripped down in size with a trade-off in functionality, so

that lwIP’s size advantage is only as apparent as it is when considering the scenario

that allowed for a fair comparison between the stacks.

Therefore, GNRC remains the perfect candidate for a network stack in RIOT as

a real-time operating system for the IoT.

6.2 Outlook

As the youngest of the three stacks compared here, GNRC still has the potential to

be more efficient, especially since its performance is very close to lwIP’s in almost

all categories.

Further experimentation needs to be carried out; especially in-depth power con-

sumption tests could be of further interest. Other testing parameters, such as for

example packet throughput and real-world scenarios with actual radio transmissions,

might also be of interest for future research in this area. Especially the performance
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under high load should be interesting with the sending behavior of fragmented pack-

ets of emb6 and lwIP compared to the more reception-lenient way in which GNRC

handles fragmentation. Furthermore, there are a few stacks that were not consid-

ered, such as the network stack of the operating system TinyOS [57] or the original

uIP stack of Contiki, as well as its RIME network stack [22]. OpenWSN [86] and

even comparisons to non-IP stacks like CCN-lite are also conceivable. Both are

already ported to RIOT (see section 2.5).

However, there must be a very clear consideration of the problem space, espe-

cially for CCN-lite and OpenWSN which differ in their function set from the purely

6LoWPAN-based stacks.

Further development on GNRC and an expansion of its feature set, which is a

given with RIOT’s rise in popularity, will also increase the necessity of a future

repetition of the comparisons provided in this thesis.

On the actual development work side of things a few issues are open. The disad-

vantages stated in section 5.4 need to be mitigated or at least addressed.

For the debugging problems, a code of conduct in the usage of popular debugging

tools like gdb might already be very helpful, but also some kind of debugging and

back-tracing capabilities for IPC messages could come in handy. This is however a

broader topic that does not only concerns the network stack, but IPC in general.

Future research needs to be put into this topic to find out if and how a solution

could be provided.

On the problems at hand regarding the ability to debug in GNRC, it turns out

that most of the problems stem from a very incomprehensive implementation of the

NDP and not due to the design of the network stack itself: Due to time constraints

during the implementation, I was forced to develop this part of GNRC in a very

ad-hoc manner and without an overarching plan. A common network layer API,

like the one presented by Ee et al. [25], might provide a better way to track packets

generated by the network protocols themselves and help find the root cause of some

major issues.

For the memory consumption of the stack we already hinted at the possibility

of optimization. More experimentation based on real-world scenarios needs to be

done to find a good default value for each memory stack on each platform. Another

possibility might be to merge some protocols that often come together for certain

use-cases. Viable candidates for this are for example 6LoWPAN and IPv6.

The disadvantage of cross-layer requirements were already addressed for the most

part: L2 metrics are provided through the netif header and certain assertions (e.g. a

packet sent over UDP already needs its IP layer allocated before entering the UDP

module) are made regarding the structure of a packet through-out the stack. For the

checksum calculation, callbacks were introduced that are called as soon all values

needed for the checksum are set. I find reassurance in the fact that we were al-

ways able to come up with comprehensible and resource-friendly solutions for these
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requirements, that future cross-layer requirements will solicit similar kinds of solu-

tions.
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