
Analysis and Comparison of Embedded Network
Stacks
Design and Evaluation of the GNRC Network Stack

Martine Lenders (4206090, mlenders@inf.fu-berlin.de)
Master thesis defense

Freie Universität Berlin, Department for Computer Science
Supervisors: Dr. Emmanuel Baccelli, Univ.-Prof. Dr. Jochen Schiller

2016-06-27

mailto:mlenders@inf.fu-berlin.de


Outline

1. Introduction

2. RIOT

3. GNRC

4. Evaluation of GNRC

5. Conclusion

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 2/34



Outline

1. Introduction

2. RIOT

3. GNRC

4. Evaluation of GNRC

5. Conclusion

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 3/34



The Internet of Things
• “Internet of Things” = broad, generic term

• Home automation
• Industry 4.0
• Cars
• Health surveillance
• Wildlife surveillance
• Wireless sensor networks
• …

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 4/34



The IoT – Constraints & Requirements

• Large address space: > 10 Internet connected devices per person
• Low energy requirements

• Low processing power: a few MHz
• Small memory: ≤ 10 KiB RAM, ≤ 100 KiB flash
• Lossy transmission medium: IEEE 802.15.4, Bluetooth Low-Energy,

NFC

• Constraints govern need for:
• specific OSs: TinyOS, Contiki, FreeRTOS, RIOT
• specific communication protocols: ZigBee, Z-Wave,

IETF’s IPv6-based IoT suite

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 5/34



The IoT – Constraints & Requirements

• Large address space: > 10 Internet connected devices per person
• Low energy requirements

• Low processing power: a few MHz
• Small memory: ≤ 10 KiB RAM, ≤ 100 KiB flash
• Lossy transmission medium: IEEE 802.15.4, Bluetooth Low-Energy,

NFC

• Constraints govern need for:
• specific OSs: TinyOS, Contiki, FreeRTOS, RIOT
• specific communication protocols: ZigBee, Z-Wave,

IETF’s IPv6-based IoT suite

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 5/34



Approaching a solution

Problem 1 Large address space

⇒ IPv4 unsuitable

232 ≈ 4.3 ⋅ 109possible addresses ≪ 7.4 ⋅ 1010devices

⇒ IPv6 (2128 ≈ 3.4 ⋅ 1038)?
Problem 2 e.g. IEEE 802.15.4 frame size max. 127 B vs.

1280 B minimum MTU in IPv6 (header alone 40 B)

⇒ Low-level fragmentation + header compression
AKA 6LoWPAN

Problem 3 TCP too complex for small memory
Congestion control harmful on lossy transmission medium

⇒ UDP instead

Problem 4 No TCP, no HTTP, no WWW?

⇒Non-TCP alternative CoAP

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 6/34



Approaching a solution

Problem 1 Large address space ⇒ IPv4 unsuitable

232 ≈ 4.3 ⋅ 109possible addresses ≪ 7.4 ⋅ 1010devices

⇒ IPv6 (2128 ≈ 3.4 ⋅ 1038)

?
Problem 2 e.g. IEEE 802.15.4 frame size max. 127 B vs.

1280 B minimum MTU in IPv6 (header alone 40 B)

⇒ Low-level fragmentation + header compression
AKA 6LoWPAN

Problem 3 TCP too complex for small memory
Congestion control harmful on lossy transmission medium

⇒ UDP instead

Problem 4 No TCP, no HTTP, no WWW?

⇒Non-TCP alternative CoAP

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 6/34



Approaching a solution

Problem 1 Large address space ⇒ IPv4 unsuitable

232 ≈ 4.3 ⋅ 109possible addresses ≪ 7.4 ⋅ 1010devices

⇒ IPv6 (2128 ≈ 3.4 ⋅ 1038)?
Problem 2 e.g. IEEE 802.15.4 frame size max. 127 B vs.

1280 B minimum MTU in IPv6 (header alone 40 B)

⇒ Low-level fragmentation + header compression
AKA 6LoWPAN

Problem 3 TCP too complex for small memory
Congestion control harmful on lossy transmission medium

⇒ UDP instead

Problem 4 No TCP, no HTTP, no WWW?

⇒Non-TCP alternative CoAP

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 6/34



Approaching a solution

Problem 1 Large address space ⇒ IPv4 unsuitable

232 ≈ 4.3 ⋅ 109possible addresses ≪ 7.4 ⋅ 1010devices

⇒ IPv6 (2128 ≈ 3.4 ⋅ 1038)

?

Problem 2 e.g. IEEE 802.15.4 frame size max. 127 B vs.
1280 B minimum MTU in IPv6 (header alone 40 B)
⇒ Low-level fragmentation + header compression
AKA 6LoWPAN

Problem 3 TCP too complex for small memory
Congestion control harmful on lossy transmission medium

⇒ UDP instead

Problem 4 No TCP, no HTTP, no WWW?

⇒Non-TCP alternative CoAP

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 6/34



Approaching a solution

Problem 1 Large address space ⇒ IPv4 unsuitable

232 ≈ 4.3 ⋅ 109possible addresses ≪ 7.4 ⋅ 1010devices

⇒ IPv6 (2128 ≈ 3.4 ⋅ 1038)

?

Problem 2 e.g. IEEE 802.15.4 frame size max. 127 B vs.
1280 B minimum MTU in IPv6 (header alone 40 B)
⇒ Low-level fragmentation + header compression
AKA 6LoWPAN

Problem 3 TCP too complex for small memory
Congestion control harmful on lossy transmission medium

⇒ UDP instead
Problem 4 No TCP, no HTTP, no WWW?

⇒Non-TCP alternative CoAP

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 6/34



Approaching a solution

Problem 1 Large address space ⇒ IPv4 unsuitable

232 ≈ 4.3 ⋅ 109possible addresses ≪ 7.4 ⋅ 1010devices

⇒ IPv6 (2128 ≈ 3.4 ⋅ 1038)

?

Problem 2 e.g. IEEE 802.15.4 frame size max. 127 B vs.
1280 B minimum MTU in IPv6 (header alone 40 B)
⇒ Low-level fragmentation + header compression
AKA 6LoWPAN

Problem 3 TCP too complex for small memory
Congestion control harmful on lossy transmission medium
⇒ UDP instead

Problem 4 No TCP, no HTTP, no WWW?

⇒Non-TCP alternative CoAP

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 6/34



Approaching a solution

Problem 1 Large address space ⇒ IPv4 unsuitable

232 ≈ 4.3 ⋅ 109possible addresses ≪ 7.4 ⋅ 1010devices

⇒ IPv6 (2128 ≈ 3.4 ⋅ 1038)

?

Problem 2 e.g. IEEE 802.15.4 frame size max. 127 B vs.
1280 B minimum MTU in IPv6 (header alone 40 B)
⇒ Low-level fragmentation + header compression
AKA 6LoWPAN

Problem 3 TCP too complex for small memory
Congestion control harmful on lossy transmission medium
⇒ UDP instead

Problem 4 No TCP, no HTTP, no WWW?

⇒Non-TCP alternative CoAP

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 6/34



Approaching a solution

Problem 1 Large address space ⇒ IPv4 unsuitable

232 ≈ 4.3 ⋅ 109possible addresses ≪ 7.4 ⋅ 1010devices

⇒ IPv6 (2128 ≈ 3.4 ⋅ 1038)

?

Problem 2 e.g. IEEE 802.15.4 frame size max. 127 B vs.
1280 B minimum MTU in IPv6 (header alone 40 B)
⇒ Low-level fragmentation + header compression
AKA 6LoWPAN

Problem 3 TCP too complex for small memory
Congestion control harmful on lossy transmission medium
⇒ UDP instead

Problem 4 No TCP, no HTTP, no WWW?
⇒Non-TCP alternative CoAP

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 6/34



Summary: The IETF protocol suite

Application

Transport

Network

Data link

Physical

HTTP DNS

TCP UDP

IPv4 / IPv6

Link Layer

Traditional TCP/IP stack

CoAP DNS

UDP

IPv6
6LoWPAN

Link Layer

IoT stack by IETF

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 7/34



Existing solutions

existing stack (RIOT)
(+) IoT support

(−) Very rigid in selection of protocols
(−) Single-packet buffering
(−) no clear structure / unmaintainable

BLIP (TinyOS) (+) Small memory footprint (+) IoT support

(−) Exotic C-dialect nesC

uIP (Contiki) (+) Well established operating system (+) IoT support

(−) Very rigid in selection of protocols
(−) Single-packet buffering

lwIP (+) Well established software (+) Modular
(+) OS independent

(−) Tricky to configure
(−) At start of thesis: no IoT support

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 8/34



Existing solutions

existing stack (RIOT)
(+) IoT support
(−) Very rigid in selection of protocols
(−) Single-packet buffering
(−) no clear structure / unmaintainable

BLIP (TinyOS) (+) Small memory footprint (+) IoT support

(−) Exotic C-dialect nesC

uIP (Contiki) (+) Well established operating system (+) IoT support

(−) Very rigid in selection of protocols
(−) Single-packet buffering

lwIP (+) Well established software (+) Modular
(+) OS independent

(−) Tricky to configure
(−) At start of thesis: no IoT support

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 8/34



Existing solutions

existing stack (RIOT)
(+) IoT support
(−) Very rigid in selection of protocols
(−) Single-packet buffering
(−) no clear structure / unmaintainable

BLIP (TinyOS) (+) Small memory footprint (+) IoT support

(−) Exotic C-dialect nesC
uIP (Contiki) (+) Well established operating system (+) IoT support

(−) Very rigid in selection of protocols
(−) Single-packet buffering

lwIP (+) Well established software (+) Modular
(+) OS independent

(−) Tricky to configure
(−) At start of thesis: no IoT support

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 8/34



Existing solutions

existing stack (RIOT)
(+) IoT support
(−) Very rigid in selection of protocols
(−) Single-packet buffering
(−) no clear structure / unmaintainable

BLIP (TinyOS) (+) Small memory footprint (+) IoT support
(−) Exotic C-dialect nesC

uIP (Contiki) (+) Well established operating system (+) IoT support

(−) Very rigid in selection of protocols
(−) Single-packet buffering

lwIP (+) Well established software (+) Modular
(+) OS independent

(−) Tricky to configure
(−) At start of thesis: no IoT support

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 8/34



Existing solutions

existing stack (RIOT)
(+) IoT support
(−) Very rigid in selection of protocols
(−) Single-packet buffering
(−) no clear structure / unmaintainable

BLIP (TinyOS) (+) Small memory footprint (+) IoT support
(−) Exotic C-dialect nesC

uIP (Contiki) (+) Well established operating system (+) IoT support

(−) Very rigid in selection of protocols
(−) Single-packet buffering

lwIP (+) Well established software (+) Modular
(+) OS independent

(−) Tricky to configure
(−) At start of thesis: no IoT support

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 8/34



Existing solutions

existing stack (RIOT)
(+) IoT support
(−) Very rigid in selection of protocols
(−) Single-packet buffering
(−) no clear structure / unmaintainable

BLIP (TinyOS) (+) Small memory footprint (+) IoT support
(−) Exotic C-dialect nesC

uIP (Contiki) (+) Well established operating system (+) IoT support
(−) Very rigid in selection of protocols
(−) Single-packet buffering

lwIP (+) Well established software (+) Modular
(+) OS independent

(−) Tricky to configure
(−) At start of thesis: no IoT support

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 8/34



Existing solutions

existing stack (RIOT)
(+) IoT support
(−) Very rigid in selection of protocols
(−) Single-packet buffering
(−) no clear structure / unmaintainable

BLIP (TinyOS) (+) Small memory footprint (+) IoT support
(−) Exotic C-dialect nesC

uIP (Contiki) (+) Well established operating system (+) IoT support
(−) Very rigid in selection of protocols
(−) Single-packet buffering

lwIP (+) Well established software (+) Modular
(+) OS independent

(−) Tricky to configure
(−) At start of thesis: no IoT support

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 8/34



Existing solutions

existing stack (RIOT)
(+) IoT support
(−) Very rigid in selection of protocols
(−) Single-packet buffering
(−) no clear structure / unmaintainable

BLIP (TinyOS) (+) Small memory footprint (+) IoT support
(−) Exotic C-dialect nesC

uIP (Contiki) (+) Well established operating system (+) IoT support
(−) Very rigid in selection of protocols
(−) Single-packet buffering

lwIP (+) Well established software (+) Modular
(+) OS independent
(−) Tricky to configure
(−) At start of thesis: no IoT support

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 8/34



Another thing to consider in LoWPANs

Internet

6LBR

6LR

6LR

6LN

6LN

6LR

6LR

6LN

6LR

6LN

6LN

6LBR: border router
6LR: router
6LN: non-routing host

⇒ Multi-interface support required (only BLIP and lwIP provides that)

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 9/34



Another thing to consider in LoWPANs

Internet

6LBR

6LR

6LR

6LN

6LN

6LR

6LR

6LN

6LR

6LN

6LN

6LBR: border router
6LR: router
6LN: non-routing host

⇒ Multi-interface support required (only BLIP and lwIP provides that)

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 9/34



Another thing to consider in LoWPANs

Internet

6LBR

6LR

6LR

6LN

6LN

6LR

6LR

6LN

6LR

6LN

6LN

6LBR: border router
6LR: router
6LN: non-routing host

⇒ Multi-interface support required (only BLIP and lwIP provides that)

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 9/34



Another thing to consider in LoWPANs

Internet

6LBR

6LR

6LR

6LN

6LN

6LR

6LR

6LN

6LR

6LN

6LN

6LBR: border router
6LR: router
6LN: non-routing host

⇒ Multi-interface support required (only BLIP and lwIP provides that)

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 9/34



Another thing to consider in LoWPANs

Internet

6LBR

6LR

6LR

6LN

6LN

6LR

6LR

6LN

6LR

6LN

6LN

6LBR: border router
6LR: router
6LN: non-routing host

⇒ Multi-interface support required (only BLIP and lwIP provides that)

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 9/34



Requirements

Functional Requirements:

• Focus on IoT protocols
• Multiple interface support
• Ability to handle >1 packet at a time

Non-functional Requirements:

• Open Standards and Tools
• Comprehensive configurability
• Modularity
• Low Memory Footprint (< 10 KiB RAM, < 30 KiB code-size)
• Low-Power Design

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 10/34



Outline

1. Introduction

2. RIOT

3. GNRC

4. Evaluation of GNRC

5. Conclusion

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 11/34



RIOT primer

• real-time OS for IoT (micro-kernel)
• published under LGPL at https://github.com/RIOT-OS/RIOT

Scheduler:
• Tick-less scheduling policy (𝑂(1)):

• Highest priority thread runs until finished or blocked
• ISR can preempt any thread at all time
• If all threads are blocked or finished:

• Special IDLE thread is run
• Goes into low-power mode

IPC:
• Synchronous (default) and asynchronous (optional, by IPC queue

initialization)

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 12/34

https://github.com/RIOT-OS/RIOT


RIOT primer

• real-time OS for IoT (micro-kernel)
• published under LGPL at https://github.com/RIOT-OS/RIOT

Scheduler:
• Tick-less scheduling policy (𝑂(1)):

• Highest priority thread runs until finished or blocked
• ISR can preempt any thread at all time
• If all threads are blocked or finished:

• Special IDLE thread is run
• Goes into low-power mode

IPC:
• Synchronous (default) and asynchronous (optional, by IPC queue

initialization)

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 12/34

https://github.com/RIOT-OS/RIOT


RIOT primer

• real-time OS for IoT (micro-kernel)
• published under LGPL at https://github.com/RIOT-OS/RIOT

Scheduler:
• Tick-less scheduling policy (𝑂(1)):

• Highest priority thread runs until finished or blocked
• ISR can preempt any thread at all time
• If all threads are blocked or finished:

• Special IDLE thread is run
• Goes into low-power mode

IPC:
• Synchronous (default) and asynchronous (optional, by IPC queue

initialization)

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 12/34

https://github.com/RIOT-OS/RIOT


RIOT’s Networking architecture

• devised to integrate any network stack into RIOT

Application / Library

conn

Network stack

Hardware

netdev

Driver

netdev

Driver

netdev

Driver

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 13/34



RIOT’s Networking architecture

• devised to integrate any network stack into RIOT

Hardware

netdev

Driver

netdev

Driver

netdev

Driver

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 13/34



netdev

• Common network device API:

netdev_t

+event_callback : callback_t
+context : void*
+send(data_buf) : int
+recv(data_buf) : int
+get(opt_type, opt_buf) : int
+set(opt_type, opt_buf) : int
+isr() : void

* 1

netdev_driver_t

+send(data_buf) : int
+recv(data_buf) : int
+get(opt_type, opt_buf) : int
+set(opt_type, opt_buf) : int
+isr() : void

• isr() method allows for getting out of ISR context

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 14/34



RIOT’s Networking architecture

Application / Library

conn

Network stack

Hardware

netdev

Driver

netdev

Driver

netdev

Driver

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 15/34



RIOT’s Networking architecture

Application / Library

conn

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 15/34



conn

• collection of unified connectivity APIs to the transport layer
• What’s the problem with POSIX sockets?

• too generic for most use-cases
• numerical file descriptors (internal storage of state required)
• in general: too complex for usage, too complex for porting

• protocol-specific APIs:
• conn_ip (raw IP)
• conn_udp (UDP)
• conn_tcp (TCP)
• …

• both IPv4 and IPv6 supported

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 16/34



Outline

1. Introduction

2. RIOT

3. GNRC

4. Evaluation of GNRC

5. Conclusion

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 17/34



The components of GNRC
Legend:

Thread
Module
API

Application / Library

gnrc_conn
conn

netapi netapi

gnrc_udp

netapi

gnrc_tcp

netapi

netapi

netapi

gnrc_ipv6

Hardware

Integrated
Device
Driver

netapi

netapi

gnrc_6lo

netapi

MAC

netdev

Driver

MAC

netdev

Driver

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 18/34



netapi
• Inter-modular API utilizing IPC
• Two asynchronous message types (don’t expect reply) for data

transfer:
• GNRC_NETAPI_MSG_TYPE_SND: pass “down” the stack (send)
• GNRC_NETAPI_MSG_TYPE_RCV: pass “up” the stack (receive)

• Two synchronous message types (expect reply) for option handling:
• GNRC_NETAPI_MSG_TYPE_GET: get option value
• GNRC_NETAPI_MSG_TYPE_SET: set option value

• specification deliberately vague
⇒ implementations can make own preconditions on data

netapi

UDP
IPv6
6LoWPAN
MAC + driver

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 19/34



Network interfaces in GNRC (1)

Legend:
Thread
Module
API

Application / Library

gnrc_conn
conn

netapi netapi

gnrc_udp

netapi

gnrc_tcp

netapi

netapi

netapi

gnrc_ipv6

Hardware

Integrated
Device
Driver

netapi

netapi

gnrc_6lo

netapi

MAC

netdev

Driver

MAC

netdev

Driver

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 20/34



Network interfaces in GNRC (1)

Legend:
Thread
Module
API

Application / Library

gnrc_conn
conn

netapi netapi

gnrc_udp

netapi

gnrc_tcp

netapi

netapi

netapi

gnrc_ipv6

Hardware

Integrated
Device
Driver

netapi

netapi

gnrc_6lo

netapi

MAC

netdev

Driver

MAC

netdev

Driver

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 20/34



Network interfaces in GNRC (2)

• netapi-capable thread as any other protocol implementation
• implement MAC protocol
• communication to driver via netdev

⇐ timing requirements for e.g. TDMA-based MAC protocols

Hardware

netapi

MAC

netdev

Driver

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 21/34



netreg

• How to know where to send netapi messages?

• Both protocol implementation and users can register to be
interested in type + certain context (e.g. port in UDP)

• gnrc_netreg_register(GNRC_NETTYPE_IPV6, ALL, &me)
• gnrc_netreg_register(GNRC_NETTYPE_UDP, PORT_DNS, &me)

⇒ Find handler for packets in registry

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 22/34



netreg

• How to know where to send netapi messages?
• Both protocol implementation and users can register to be

interested in type + certain context (e.g. port in UDP)
• gnrc_netreg_register(GNRC_NETTYPE_IPV6, ALL, &me)
• gnrc_netreg_register(GNRC_NETTYPE_UDP, PORT_DNS, &me)

⇒ Find handler for packets in registry

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 22/34



pktbuf
• Data packet stored in pktbuf
• Representation: list of variable-length “packet snips”
• Protocols can mark sections of data to create new snip
• keeping track of referencing threads: reference counter users

• if users == 0: packet removed from packet buffer
• if users > 1 and write access requested: packet duplicated

(copy-on-write)
• to keep duplication minimal: only up to current snip

⇒ Reverse order of snips (not data) on reception

IPv6 header
data

next
data

length
type
users

UDP header
data

next
data

length
type
users

next
data

length
type
users

UDP
payload
data

packet
snip

descriptor

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 23/34



Outline

1. Introduction

2. RIOT

3. GNRC

4. Evaluation of GNRC

5. Conclusion

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 24/34



Feature-based comparison

• Comparison of GNRC with emb6 (OS-independent fork of uIP) and
lwIP

m
u
lt
i-
if
ac
e.

6LoWPAN

IP
v6

ICMPv6

T
C
P

U
D
P

C
oA
P

Frag.

H
C
1

IP
H
C

N
H
C

er
ro
r

ec
h
o

N
D
P

S
L
A
A
C

6L
o-
N
D

M
L
D

R PL

Stack re
se
q.

m
u
lt
.

st
.

n
on
-s
t.

GNRC ✔ ✔ ✔ ✘ ✔ ✔ ✔ ⚫ ✔ ✔ ✘ ✔ ✘ ✔ ⚫ ✘ ✔ ♦

lwIP ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✔ ♦

emb6 ✘ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✘ ⚫ ✔ ✔

Comparison of network stack features (✔= supported, ✘= not supported,
⚫= partially supported, ♦ = support through external library)

• lwIP additionally has IPv4 (+ ARP), PPP and DNS support
,

Analysis and Comparison of Embedded Network Stacks, 2016-06-27 25/34



Set-up for stack traversal-time tests

Experiment app

conn

Network stack

netdev

Mock-up device

UDP payload

(a) UDP transmission

Experiment app

conn

Network stack

netdev

Mock-up device

fragmented
UDP payload

(b) UDP reception

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 26/34



Stack-traversal time

200 400 600 800 1000 1200
UDP payload length in byte

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t 
in

 m
s

emb6

GNRC

lwIP

(a) UDP transmission

200 400 600 800 1000 1200
UDP payload length in byte

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

t 
in

 m
s

(b) UDP reception

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 27/34



Memory usage
• Taken application for stack traversal time tests in reception as

reference
• compiled on 32-bit platform (ARM Cortex-M3)
• network stacks were configured to handle 1280 byte IPv6 packets

emb6 GNRC lwIP
0

5

10

15

20

K
iB

(a) ROM size of the stacks
emb6 GNRC lwIP

0

2

4

6

8

10

12

14

K
iB

API

UDP

IPv6

6LoWPAN

MAC

Auxiliary

(b) RAM size of the stacks
,

Analysis and Comparison of Embedded Network Stacks, 2016-06-27 28/34



Comparison – Summary

• overall close second behind lwIP
• considering GNRC’s age (~1 yr vs. ~15 yr of lwIP and uIP)

⇒ very good
• GNRC easier to work with

• configuration of both emb6 and lwIP fiddly
• documentation: mixed reactions from community

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 29/34



Discussion of GNRC

Advantages
• Well defined interface

enforces clear
communication between
modules

• Use-cases are easy to
describe in terms of API
usage

• IPC-based API allows
parallel data handling per
design

• Very loose coupling
between modules

• packet buffer’s size easy to
adapt to given use-case

Disadvantages
• IPC-based API is hard to

debug
• memory hungry due to

required memory stack
allocation

• theory vs. praxis:
cross-layer requirements
everywhere

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 30/34



Outline

1. Introduction

2. RIOT

3. GNRC

4. Evaluation of GNRC

5. Conclusion

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 31/34



Contributions

• Co-design of GNRC, netdev, and conn
• Implementation work:

• over 500 PRs contributed on GitHub:
• 6LoWPAN and IPv6 (incl. NDP) layer for GNRC
• pktbuf
• several netdev-based drivers
• port of lwIP and emb6 to RIOT
• …

• RIOT maintenance:
• over 500 PRs (co-)reviewed on GitHub
• consultance to community regarding all things GNRC

• Research:
• co-authorship and presentation of paper to

workshop @ ACM MobiSys’15
• co-authorship of proposed paper to USENIX OSDI’16

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 32/34



Conclusion

• Performance-wise GNRC only (close) second after more mature lwIP
• BUT: GNRC developed with real-time in mind, lwIP not
• Both GNRC and emb6 can be stripped down via configuration to be

smaller
• GNRC remains best candidate for embedded RTOS RIOT

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 33/34



Outlook

• Optimization efforts both size- and performance-wise
• Mitigation efforts of GNRC’s disadvantages
• Expansion of GNRC’s feature set.
• Further experimentation with other testing parameters

• power consumption
• performance under stress
• …

• Further experimentation with more stacks
• BLIP (TinyOS)
• vanilla uIP and RIME (Contiki)
• OpenWSN
• CCN-lite
• …

,
Analysis and Comparison of Embedded Network Stacks, 2016-06-27 34/34


	Introduction
	The Internet of Things
	Existing solutions
	Requirements

	RIOT
	The Kernel
	Networking architecture

	GNRC
	Architecture

	Evaluation of GNRC
	Feature-based comparison
	Stack-traversal time
	Memory-size
	Summary
	Discussion of GNRC

	Conclusion
	Contributions
	Conclusion
	Outlook


